Additional Problems Assignment 23

- 1. Suppose X and Y are topological spaces. Show that $X \times Y$ is Hausdorff if and only if both X and Y are Hausdorff.
- 2. Suppose X is a set and \mathscr{T}_1 and \mathscr{T}_2 are topologies on X with $\mathscr{T}_1 \subset \mathscr{T}_2$ (i.e. $\mathscr{T}_1 \subseteq \mathscr{T}_2$ and $\mathscr{T}_1 \neq \mathscr{T}_2$).
 - (a) Show if (X, \mathscr{T}_1) is compact and Hausdorff then (X, \mathscr{T}_2) is Hausdorff but not compact.
 - (b) Show if (X, \mathscr{T}_2) is compact and Hausdorff then (X, \mathscr{T}_1) is compact but not Hausdorff.

If you can do this problem in a clever way without a hint then you will be **the** group. You can do it. If you are okay with just being **a** group you can look at this hint.