PAGE
Team # 7841

Page 1 of 1

Introduction

Our goal was to find several models that can be used to predict three things: where a murderer lives, where his next attack will be, and when the next attack will be. We wanted to be able to use these models along with information regarding when and where previous crimes have been committed to formulate a prediction of the most likely region and time of a future crime. We also wanted to somehow use the “center of mass” of the crimes to determine where the murderer lives.

We are assuming that all of the murders we use in our models were committed by the same person, and that this person has a permanent residence. We assumed that this residence is at the “center of mass.” We also assumed that the murderer is likely to return to his home between crimes, but that he may stay in another location (his car, a hotel, etc.) between crimes. Whether or not the criminal returns to his home between each crime affects the results of our models, so we took this into consideration when devising them.

Other factors that should be considered are the time of day and the type of location the crimes were committed in. We assumed that if a pattern is observed, such as all of the crimes being committed in a mall in the afternoon, that this pattern will continue to stay true. We did not use this type of information in our models, so this information should be considered after using the information provided by our models.

The Model

We began by deciding that the two most important factors we should use to make our models are the time elapsed between consecutive crimes and the distance between consecutive crimes. This would allow us to find the criminal’s pattern, assuming that he has one, to determine when and where the next crime would be committed.

The graphs we generated in Figure 1 plot the crimes based on the number of days they were committed after the previous crime. Graph A1 is the case in which the murderer gets faster, meaning that the time between crimes decreases as he commits more crimes. Graph B1 is the case in which the murderer gets slower, meaning that the time between crimes increases as he commits more crimes. And Graph C1 is the case in which the murderer keeps the crimes spaced out at even time intervals. We decided that, based on which one of these plots the crimes fall into, we could use the equation of our best-fit line to determine the time at which the next crime would be committed.

In creating Figure 5, the different points labeled with different numbers indicate the crimes and the order in which they were committed. We made a random scatter plot of points to create this, with no specific pattern. (We will describe Figure 5 in greater detail later.) The data used to create Figure 3 was obtained by estimating the distances between consecutive crime locations in Figure 5. Our plot in Figure 3 shows the farthest the criminal has traveled from one crime to the next, which we used to create the circles you see in Figure 5.

As we have already explained, Figure 5 shows a random plot of crimes. We could calculate the “center of mass” by assigning each point to a corresponding (x,y) coordinate and averaging them. This center of mass is the most likely place for the location of the criminal’s permanent residence. The line labeled x connects the center of mass to the crime location farthest from the center of mass. We used x as the radius to create a circle around the center of mass. This inner circle therefore contains all of the points of the previous crimes and is the area where another crime is likely to occur. The distance z is the farthest distance traveled between crimes, as found by Figure 3. We decided that this is the farthest distance the criminal will travel from the last crime (crime 8 in our example) before he commits another crime. Because of this, we used z plus the distance from the center of mass to the latest crime (crime 8) to form the radius of another circle, the outer circle in our figure. This is the ‘buffer’ region in which there is a chance, based on our criminal’s pattern, that another crime may be committed. The buffer region also takes into consideration the fact that the murderer may or may not return home after crime 8. After considering how to put all of these pieces together to form a better model, we decided that we should form one last circle. This circle would center around point 8 with a radius of z. This would be the region of highest probability for the next crime.

We then wrote a java program (Figure 4) that allows us to represent our model in Figure 5. In this program, after each coordinate point (crime location) we enter, the program gives us 4 pieces of information:

1. The points of the crimes we’ve entered

2. The new center of mass

3. The inner radius value, x (the distance from the center of mass to the point farthest away from the center of mass)

4. The outer radius value, z (the distance from the center of mass to the last crime plus the distance between the two consecutive crimes that occur farthest away from each other

This program is very helpful because it allows us to easily adjust Figure 5 as more crimes are committed, giving us a more accurate idea of where the next crime will be committed.

While our center of mass based on averaging the coordinate values is helpful to determine where the criminal lives, we wanted to come up with a stronger idea. This is what our final figure, Figure 2, shows.

To begin this method, which we call The Triangle Method, you first plot the point of each crime on a geographical map. Once you have the first three crimes plotted, draw a triangle connecting them and shade in triangle (refer to Figure A2). Then, plot the fourth crime and draw a triangle connect the fourth crime to the two previous crimes (crime two and crime three), refer to Figure B2. Notice the region intercepted by the two triangles is shaded darker. Continue to plot the crimes and draw triangles. Figures C2, D2, and E2 illustrate the progression. The idea is, the darker the shading of the region, the more likely that the criminal lives in that area. We view this method as a more sophisticated alternative to the Center of Mass method.

There are many strengths presented by The Triangle Method. First, this method takes into account the order of the crimes. As more crimes are committed, the probable area of where the criminal lives changes. Also, each region with different color shading has a different probability. So there are regions with strong probability (darkly shaded regions), with medium probability (medium-dark regions), and low probability (lightly shaded regions). This gives us more options when it comes to locating the criminal. Lastly, the triangle method allows us to see where previous probable regions were, in case we want to take those into consideration.

The main weakness of this method is that it only considers the area in between crimes. It does not consider any region outside the triangles between crimes. Also, this method requires that the criminal commit a large number of crimes. If the criminal only commits three to five crimes, there might be a lot of areas with low probability, or one large region with high probability, leaving it difficult to narrow down where the criminal actually lives.
Conclusion &Future Work

While our center of mass method is a good tool to use to determine where a criminal lives, our Triangle Method is much more sophisticated and provides us with more information, such as high probability, medium probability and low probability regions. If we had more time, we would create a program that would allow us to generate plots such as those in Figures A2-E2 by adding in the coordinates of previous crimes, as we did for our center of mass graph. It would be useful to have a program that could show the different probabilities in the different regions and track the path of movement the criminal takes.

In order to further our center of mass model we would create a program that could generate a plot such as that in Figure 5 after using the program we created. We would like to use a java swing interface to make it easier to use.

If time permitted, we would like to take other information into consideration, such as the type of crime, the type of location, and the time of day at which the crime was committed.

After improving our models we would like to test them by inputting data from actual past crimes and seeing how accurate our models really are.

[image: image1.jpg]Figure A2 Figure E2

Figure B2

Figure C2

[image: image2.jpg]Figure 5

[image: image3.png]Figure 5

Figure 4

(Jave Source Code)
import java.util.*;

@SuppressWarnings("unchecked")

public class centerOfMass {

 public static LinkedList getCoordinates() {

 Scanner scan = new Scanner(System.in);

 LinkedList location = new LinkedList();

 // Get the X and Y coordinate of the crime from the user.
 System.out.print("Enter x-coordinate: ");

 location.add(scan.nextDouble());

 System.out.print("Enter y-coordinate: ");

 location.add(scan.nextDouble());

 return location;

 }

 public static LinkedList findCenter(LinkedList crimes) {

 LinkedList centerOfMass = new LinkedList();

 int totalCrimes = crimes.size();

 // find the x-coordinate from all crimes and them it together.
 double xTotal = 0;

 double yTotal = 0;

 for(int i = 0; i<totalCrimes; i++) {

 xTotal += (Double)((LinkedList)crimes.get(i)).getFirst();

 yTotal += (Double)((LinkedList)crimes.get(i)).getLast();

 }

 //Divide both the xTotal and yTotal by totalCrimes
 centerOfMass.add(xTotal/totalCrimes);

 centerOfMass.add(yTotal/totalCrimes);

 return centerOfMass;

 }

 public static double distance(LinkedList firstPoint, LinkedList secondPoint) {

 return Math.sqrt(Math.pow(((Double)(firstPoint.getFirst()) - ((Double)secondPoint.getFirst())),2)

 + Math.pow((Double)(firstPoint.getLast()) - ((Double)secondPoint.getLast()),2));

 }

 public static double computeRadius(LinkedList crimes, LinkedList center) {

 int totalCrimes = crimes.size();

 double longestDistance = 0;

 double centerX = (Double)center.getFirst();

 double centerY = (Double)center.getLast();

 double currentDistance;

 for(int i = 0; i<totalCrimes; i++) {

 // Use distance formula to find the distance from the center to the current crime
 currentDistance = (Double)distance((LinkedList)crimes.get(i), center);

 if (currentDistance > longestDistance)

 longestDistance = currentDistance;

 }

 return longestDistance;

 }

 public static void main(String[] args) {

 Scanner scan = new Scanner(System.in);

 LinkedList list = new LinkedList();

 double longestDistanceBetween = 0;

 int crimeNumber = 1;

 boolean addMore = true;

 while (addMore) {

 System.out.println("Crime " + crimeNumber++ +":");

 list.add(getCoordinates());

 // Check to see if the new crime changes the longest distance between two crimes.
 if (list.size() != 1) {

 LinkedList secondToLast = (LinkedList)list.get(list.size()-2);

 LinkedList last = (LinkedList)list.getLast();

 double distance = distance(secondToLast, last);

 if (distance > longestDistanceBetween)

 longestDistanceBetween = distance;

 }

 System.out.println("\nCrime locations: " + list);

 LinkedList center = findCenter(list);

 double radius = computeRadius(list, center);

 // distance from center of mass to the last crime
 double lastdistance = distance(center, (LinkedList)list.getLast());

 double radius2 = lastdistance + longestDistanceBetween;

 System.out.println("Center of Mass: " + center);

 System.out.println("Inner Radius: " + radius);

 System.out.println("Outer Radius: " + radius2);

 // Check if there are more crimes to add
 System.out.println("\n ***Add another crime location? type 'y' for yes, 'n' for no***");

 if (scan.next().equalsIgnoreCase("n"))

 addMore = false;

 }

 }

}

Sample Run - bold indicates user input

Crime 1:

Enter x-coordinate: 0
Enter y-coordinate: 0
Crime locations: [[0.0, 0.0]]

Center of Mass: [0.0, 0.0]

Inner Radius: 0.0

Outer Radius: 0.0

 Add another crime location? type 'y' for yes, 'n' for no

y
Crime 2:

Enter x-coordinate: 2
Enter y-coordinate: 0
Crime locations: [[0.0, 0.0], [2.0, 0.0]]

Center of Mass: [1.0, 0.0]

Inner Radius: 1.0

Outer Radius: 3.0

 Add another crime location? type 'y' for yes, 'n' for no

y
Crime 3:

Enter x-coordinate: 0
Enter y-coordinate: 2
Crime locations: [[0.0, 0.0], [2.0, 0.0], [0.0, 2.0]]

Center of Mass: [0.6666666666666666, 0.6666666666666666]

Inner Radius: 1.4907119849998598

Outer Radius: 4.31913910974605

 Add another crime location? type 'y' for yes, 'n' for no

y

Crime 4:

Enter x-coordinate: 2
Enter y-coordinate: 2
Crime locations: [[0.0, 0.0], [2.0, 0.0], [0.0, 2.0], [2.0, 2.0]]

Center of Mass: [1.0, 1.0]

Inner Radius: 1.4142135623730951

Outer Radius: 4.242640687119286

 Add another crime location? type 'y' for yes, 'n' for no

y
Crime 5:

Enter x-coordinate: 1
Enter y-coordinate: 3
Crime locations: [[0.0, 0.0], [2.0, 0.0], [0.0, 2.0], [2.0, 2.0], [1.0, 3.0]]

Center of Mass: [1.0, 1.4]

Inner Radius: 1.7204650534085253

Outer Radius: 4.42842712474619

 Add another crime location? type 'y' for yes, 'n' for no

n

