\relax \ifx\hyper@anchor\@undefined \global \let \oldcontentsline\contentsline \gdef \contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}} \global \let \oldnewlabel\newlabel \gdef \newlabel#1#2{\newlabelxx{#1}#2} \gdef \newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}} \AtEndDocument{\let \contentsline\oldcontentsline \let \newlabel\oldnewlabel} \else \global \let \hyper@last\relax \fi \citation{latex} \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{1}{section.1}} \@writefile{toc}{\contentsline {section}{\numberline {2}Equations}{1}{section.2}} \newlabel{eq:ising}{{2}{1}{Equations\relax }{equation.2.2}{}} \newlabel{eq:fine}{{4}{2}{Equations\relax }{equation.2.4}{}} \newlabel{eq:mdiv}{{8}{2}{Equations\relax }{equation.2.8}{}} \@writefile{toc}{\contentsline {section}{\numberline {3}Tables}{3}{section.3}} \@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Comparison of the mean-field predictions for the critical temperature of the Ising model with exact results and the best known estimates for different spatial dimensions $d$ and lattice symmetries.}}{3}{table.1}} \newlabel{tab:5/tc}{{1}{3}{\label {tab:5/tc}Comparison of the mean-field predictions for the critical temperature of the Ising model with exact results and the best known estimates for different spatial dimensions $d$ and lattice symmetries}{table.1}{}} \@writefile{toc}{\contentsline {section}{\numberline {4}Lists}{3}{section.4}} \@writefile{toc}{\contentsline {section}{\numberline {5}Figures}{4}{section.5}} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Show me a sine.}}{4}{figure.1}} \newlabel{fig:typical}{{1}{4}{\label {fig:typical}Show me a sine}{figure.1}{}} \@writefile{toc}{\contentsline {section}{\numberline {6}Literal text}{4}{section.6}} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Plot of the Lennard-Jones potential $u(r)$. The potential is characterized by a length $\sigma $ and an energy $\epsilon $.}}{5}{figure.2}} \newlabel{fig:lj}{{2}{5}{\label {fig:lj}Plot of the Lennard-Jones potential $u(r)$. The potential is characterized by a length $\sigma $ and an energy $\epsilon $}{figure.2}{}} \@writefile{toc}{\contentsline {section}{\numberline {7}Special Symbols}{5}{section.7}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.1}Common Greek letters}{5}{subsection.7.1}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.2}Special symbols}{5}{subsection.7.2}} \bibcite{latex}{1} \bibcite{website}{2} \@writefile{toc}{\contentsline {section}{\numberline {8}\color {red}Use of Color}{6}{section.8}} \newlabel{morefig}{{9}{6}{\label {morefig}Subfigures\relax }{section.9}{}} \@writefile{toc}{\contentsline {section}{\numberline {9}Subfigures}{6}{section.9}} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Two representations of complex wave functions.}}{7}{figure.3}} \newlabel{fig:qm/complexfunctions}{{3}{7}{\label {fig:qm/complexfunctions} Two representations of complex wave functions}{figure.3}{}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Real and imaginary.}}}{7}{figure.3}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Amplitude and phase.}}}{7}{figure.3}}