Introduction to $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$

(c) 2006 by Harvey Gould

December 5, 2006

1 Introduction

$\mathrm{T}_{\mathrm{E}} \mathrm{l}$ looks more difficult than it is. It is almost as easy as π. See how easy it is to make special symbols such as $\alpha, \beta, \gamma, \delta, \sin x, \hbar, \lambda, \ldots$ We also can make subscripts $A_{x}, A_{x y}$ and superscripts, $e^{x}, e^{x^{2}}$, and $e^{a^{b}}$. We will use $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$, which is based on $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ and has many higher-level commands (macros) for formatting, making tables, etc. More information can be found in Ref. [1].

We just made a new paragraph. Extra lines and spaces make no difference. Note that all formulas are enclosed by $\$$ and occur in math mode.

The default font is Computer Modern. It includes italics, boldface, slanted, and monospaced fonts.

2 Equations

Let us see how easy it is to write equations.

$$
\begin{equation*}
\Delta=\sum_{i=1}^{N} w_{i}\left(x_{i}-\bar{x}\right)^{2} . \tag{1}
\end{equation*}
$$

It is a good idea to number equations, but we can have a equation without a number by writing

$$
P(x)=\frac{x-a}{b-a},
$$

and

$$
g=\frac{1}{2} \sqrt{2 \pi}
$$

We can give an equation a label so that we can refer to it later.

$$
\begin{equation*}
E=-J \sum_{i=1}^{N} s_{i} s_{i+1} \tag{2}
\end{equation*}
$$

Equation (2) expresses the energy of a configuration of spins in the Ising model $\|_{\square}^{1}$
We can define our own macros to save typing. For example, suppose that we introduce the macros:

```
\newcommand{\lb}{{\langle}}
\newcommand{\rb}{{\rangle}}
```

Then we can write the average value of x as

```
\begin{equation}
\lb x \rb = 3
\end{equation}
```

The result is

$$
\begin{equation*}
\langle x\rangle=3 \tag{3}
\end{equation*}
$$

Examples of more complicated equations:

$$
\begin{equation*}
I=\int_{-\infty}^{\infty} f(x) d x \tag{4}
\end{equation*}
$$

We can do some fine tuning by adding small amounts of horizontal spacing:

```
\, small space \! negative space
```

as is done in Eq. (4).
We also can align several equations:

$$
\begin{align*}
& a=b \tag{5}\\
& c=d \tag{6}
\end{align*}
$$

or number them as subequations:

$$
\begin{align*}
a & =b \tag{7a}\\
c & =d . \tag{7b}
\end{align*}
$$

We can also have different cases:

$$
m(T)= \begin{cases}0 & T>T_{c} \tag{8}\\ \left(1-[\sinh 2 \beta J]^{-4}\right)^{1 / 8} & T<T_{c}\end{cases}
$$

[^0]write matrices
\[

$$
\begin{align*}
\mathbf{T} & =\left(\begin{array}{ll}
T_{++} & T_{+-} \\
T_{-+} & T_{--}
\end{array}\right) \\
& =\left(\begin{array}{ll}
e^{\beta(J+B)} & e^{-\beta J} \\
e^{-\beta J} & e^{\beta(J-B)}
\end{array}\right) . \tag{9}
\end{align*}
$$
\]

and

$$
\begin{equation*}
\sum_{i} \vec{A} \cdot \vec{B}=-P \int \mathbf{r} \cdot \hat{\mathbf{n}} d A=P \int \vec{\nabla} \cdot \mathbf{r} d V \tag{10}
\end{equation*}
$$

3 Tables

Tables are a little more difficult. TeX automatically calculates the width of the columns.

lattice	d	q	T_{mf} / T_{c}
square	2	4	1.763
triangular	2	6	1.648
diamond	3	4	1.479
simple cubic	3	6	1.330
bcc	3	8	1.260
fcc	3	12	1.225

Table 1: Comparison of the mean-field predictions for the critical temperature of the Ising model with exact results and the best known estimates for different spatial dimensions d and lattice symmetries.

4 Lists

Some example of formatted lists include the following:

1. bread
2. cheese

- Tom
- Dick

5 Figures

We can make figures bigger or smaller by scaling them. Figure 2 has been scaled by 60%.

Figure 1: Show me a sine.

6 Literal text

It is desirable to print program code exactly as it is typed in a monospaced font. Use \begin\{verbatim\}and \end\{verbatim\}as in the following example: }

```
double y0 = 10; // example of declaration and assignment statement
double v0 = 0; // initial velocity
double t = 0; // time
double dt = 0.01; // time step
double y = y0;
```


Figure 2: Plot of the Lennard-Jones potential $u(r)$. The potential is characterized by a length σ and an energy ϵ.

The command \verbatiminput\{programs/Square.java\}\allows you to list the file Square.java in the directory programs.

$7 \quad$ Special Symbols

7.1 Common Greek letters

These commands may be used only in math mode. Only the most common letters are included here.

$$
\alpha, \beta, \gamma, \Gamma, \delta, \Delta, \epsilon, \zeta, \eta, \theta, \Theta, \kappa, \lambda, \Lambda, \mu, \nu, \xi, \Xi, \pi, \Pi, \rho, \sigma, \tau, \phi, \Phi, \chi, \psi, \Psi, \omega, \Omega
$$

7.2 Special symbols

The derivative is defined as

$$
\begin{gather*}
\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} \tag{11}\\
f(x) \rightarrow y \quad \text { as } \quad x \rightarrow x_{0} \tag{12}\\
f(x) \underset{x \rightarrow x_{0}}{\longrightarrow} y \tag{13}
\end{gather*}
$$

Order of magnitude:

$$
\begin{align*}
& \log _{10} f \simeq n \tag{14}\\
& f(x) \sim 10^{n} \tag{15}
\end{align*}
$$

Approximate equality:

$$
\begin{equation*}
f(x) \simeq g(x) \tag{16}
\end{equation*}
$$

${ }^{\mathrm{EA}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ is simple if we keep everything in proportion:

$$
\begin{equation*}
f(x) \propto x^{3} \tag{17}
\end{equation*}
$$

Finally we can skip some space by using commands such as
\bigskip \medskip \smallskip \vspace\{1pc\}
The space can be negative.

8 Use of Color

We can change colors for emphasis, but who is going pay for the ink?

$9 \quad$ Subfigures

As soon as many students start becoming comfortable using $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$, they want to use some of its advanced features. So we now show how to place two figures side by side.

We first have to include the necessary package, age\{subfigure\},whichhastogointhepreamble(before\begin\{document\}).Itsometimescanbedifficult}toplaceafigureinthedesiredplace.undefined

Your LaTeX document can be easily modified to make a poster or a screen presentation similar to (and better than) PowerPoint. Conversion to HTML is straightforward. Comments on this tutorial are appreciated.

References

[1] Helmut Kopka and Patrick W. Daly, A Guide to $L^{A} T_{E} X$: Document Preparation for Beginners and Advanced Users, fourth edition, Addison-Wesley (2004).
[2] Some useful links are given at http://sip.clarku.edu/tutorials/TeX/.
Updated 5 December 2006.

Figure 3: Two representations of complex wave functions.

[^0]: ${ }^{1}$ It is necessary to process (typeset) a file twice to get the counters correct.

