
The Rabin-Miller Primality Test 

Fermat Pseudoprimes; The Fermat Primality Test 

Fermat’s Little Theorem allows us to prove that a number is composite 
without actually factoring it. 

Fermat’s Little Theorem (alternate statement):  If an−1 ≡/ 1 (mod n)  

for some a with a ≡/ 0 (mod n), then n is composite.  

This statement is absolute:  There are no exceptions. 

Unfortunately, the inverse statement is not always true.    

Inverse to Fermat’s Little Theorem (not always true):  If an−1 ≡  1 
(mod n)  for some a with a ≡/ 0 (mod n), then n is prime.  

Some counterexamples: 

  2340 ≡ 1 (mod 341),  but 341 = 11⋅ 31 is composite, and  

  5560 ≡ 1 (mod 561),  but 561 = 3 ⋅11 ⋅17 is composite. 

 We say that 341 is a Fermat pseudoprime (to the base 2), and 
 561 is a Fermat pseudoprime to the base 5. 

It is even possible for an−1 ≡  1 (mod n)  to hold for every a with 
gcd(a,n) = 1, and still have n be composite.    

This occurs if n is a Carmichael number (also called an absolute 
Fermat pseudoprime).  A Carmichael number is a Fermat 
pseudoprime to any base a with gcd(a,n) =  1.  

Carmichael numbers are fairly rare:  There are only seven less than 
10000:   

561,  1105,  1729,  2465,  2821,  6601,  8911
 

In fact, there are only 585,355 Carmichael numbers less than 1017. 

 Given a randomly chosen odd integer n less than 1017, the 
probability that n is a Carmichael number is only a little over 
10−11 (about one in one hundred billion). 

For a randomly chosen odd integer n with 100 to 300 digits, the 
probability that n is a Carmichael number appears to be exceedingly 
low (for practical purpose, zero). 

If n is composite and not a Carmichael number, then there are at most 
ϕ(n) /2 values of a (1 ≤ a < n) for which an−1 ≡  1 (mod n).   

Let n be any odd integer, other than a Carmichael number. 

 Say we choose 50 random integers a and compute that each 
satisfies an−1 ≡   1 (mod n). 

 The probability that this would occur if n is composite is at most 
2−50 ≈ 10−15. 

 So we can say with reasonable certainty that n is prime. 

If n is composite and not a Carmichael number, then it is actually 
possible to have ϕ(n) /2 values for which an−1 ≡  1 (mod n). 

For example, take n = 91 = 7⋅13.   ϕ(n)  =  6 ⋅12 = 72. 

There are 36 values of a with a72 ≡  1 (mod 91), namely a = 1, 3, 
4, 9, 10, 12, 16, 17, 22, 23, 25, 27, 29, 30, 36, 38, 40, 43, 48, 51, 
53, 55, 61, 62, 64, 66, 68, 69, 74, 75, 79, 81, 82, 87, 88, 90. 



But this is unusual. 

For nearly all odd composite integers n (other than Carmichael 
numbers), an−1 ≡ 1 (mod n) for far fewer than ϕ(n) /2 values of a.  

For example, let us look at odd composite integers starting with 
10001. 

n ϕ(n)  
No of a with 

an−1 ≡ 1(mod n) 

10001 9792 64 
10003 8568 36 
10005 4928 64 
10011 6440 280 
10013 8640 16 
10015 8008 4 
10017 5616 16 
10019 9744 4 
10021 9100 100 
10023 6144 8 
10025 8000 32 
10027 9720 162 
10029 6684 4 
10031 8592 4 
10033 9828 36 
10035 5328 8 
10041 6192 4 
10043 9020 4 

This means that far fewer than the 50 random values of a, 
mentioned earlier, are typically sufficient to show that an odd 
integer (not a Carmichael number) is prime, with near certainty. 

For a randomly chosen odd integer n with 100 to 300 digits, it appears 
that if an−1 ≡  1 (mod n) for even a single randomly chosen a, then n is 
prime with probability very close to 1. 

Fermat Test for Primality: To test whether n is prime or composite, 
choose a at random and compute an−1 (mod n). 

    i) If  an−1 ≡ 1 (mod n), declare n a probable prime, and 
optionally repeat the test a few more times. 

   ii) If  an−1    ≡/ 1 (mod n), declare n composite, and stop. 

We have seen that the Fermat test is really quite good for large 
numbers.   

 One limitation:  If someone is supposed to provide us with a prime 
number, and sends a Carmichael number instead, we cannot detect 
the deception with the Fermat test. 

 In any case, we can improve upon the Fermat test at almost no cost. 

Euler Pseudoprimes; The Euler Test 

If n is an odd prime, we know that an integer can have at most two 
square roots, mod n.  In particular, the only square roots of 1 (mod n) 
are ±1.  



 If a ≡/ 0 (mod n),  a(n−1)/2 is a square root of a(n−1) ≡  1 (mod n), so 
a(n−1)/2 ≡   ±1 (mod n).    

If a (n−1)/2 ≡/  ±1 (mod n)  for some a with a ≡/ 0 (mod n), then n is 
composite.  

Euler Test:  For a randomly chosen a with a ≡/ 0 (mod n), compute 
a(n−1)/2 (mod n). 

 i) If  a(n−1)/2 ≡   ±1 (mod n), declare n a probable prime, and 
optionally repeat the test a few more times. 

    If n is large and chosen at random, the probability that n is 
prime is very close to 1. 

 ii) If  a(n−1)/2 ≡/  ±1 (mod n), declare n composite.   
    This is always correct. 

The Euler test is more powerful than the Fermat test. 

 If the Fermat test finds that n is composite, so does the Euler test. 

 But the Euler test may find n composite even when the Fermat test 
fails.  Why? 

  If n is an odd composite integer (other than a prime power), 
1 has at least 4 square roots mod n.   

  So we can have a(n−1)/2 ≡   β (mod n), where β ≠ ±1 is a square 
root of 1.  Then an−1 ≡  1 (mod n).  In this situation, the Fermat 
Test (incorrectly) declares n a probable prime, but the Euler 
test (correctly) declares n composite. 

We noted earlier that 

 2340 ≡ 1 (mod 341),  even though 340 is composite, and  

 5560 ≡ 1 (mod 561),  even though 561 is composite. 

We can compute that 

 2170 ≡ 1 (mod 341),  even though 340 is composite, but  

 5280 ≡ 67 ≡/  ±1 (mod 561),  showing that 561 is composite. 

We call 341 an Euler pseudoprime to the base 2.   

But note that 561 is not an Euler pseudoprime base 5, even though 
it is a Fermat pseudoprime base 5. 

 On the whole, there are only about half as many Euler 
pseudoprimes as Fermat pseudoprimes. 

Consider the seven Carmichael numbers less than 10000. 

  The Euler test can show that 5 of the 7 numbers are composite. 

n ϕ(n)  
No of a with 

an−1 ≡ 1(mod n) 
No of a with  

a(n−1)/2  ≡ ±1(mod n) 

561 320 320 160 
1105 768 768 384 
1729 1296 1296 1296 
2465 1792 1792 1792 
2881 2160 2160 1080 
6601 5280 5280 2640 
8911 7128 7128 1782 



The integers 1729 and 2465 are called absolute Euler pseudoprimes 
(by analogy with the absolute Fermat pseudoprimes, i.e., Carmichael 
numbers). 

 These are composite odd integers such that a(n−1)/2 ≡   ±1 (mod n) 
for every a with gcd(a,n) = 1. 

These number cannot be proven composite with the Euler test 
(unless we happen to choose an a with gcd(a,n) > 1, which is 
exceedingly unlikely if n is a large integer lacking small prime 
factors. 

There are fewer absolute Euler pseudoprimes than there are 
Carmichael numbers, but unfortunately absolute Euler pseudoprimes 
do exist. 

The Rabin-Miller Primality Test 

The Euler test improves upon the Fermat test by taking advantage of 
the fact, if 1 has a square root other than ±1 (mod n), then n must be 
composite. 

 If  a(n−1)/2 ≡/  ±1 (mod n), where gcd(a ,n) = 1, then n must be 
composite for one of two reasons: 

  i) If  an−1    ≡/ 1 (mod n), then n must be composite by Fermat’s 
Little Theorem 

 ii) If  an−1 ≡ 1 (mod n),  then n must be composite because 
a(n−1)/2 is a square root of 1 (mod n) different from ±1. 

The limitation of the Euler test is that is does not go to any special 
effort to find square roots of 1, different from ±1.  The Rabin-Miller 
test does do this. 

For example, recall the Euler Test declares 341 a probable prime 
because 2170 ≡ 1 (mod 341).   

But if we compute 285 (mod 341), we find 285 ≡ 32 (mod 341).  
Thus 32 is a square root of 22 ⋅85 ≡ 2170 ≡ 1 (mod 341), different 
from ±1, so we would find that 341 is composite. 

In the Rabin-Miller test, we write n −1 = 2s⋅m, with m odd and s ≥ 1. 

We then start by compute am (mod n) using fast exponentiation. 

 If am ≡ ±1 (mod n), we declare n a probable prime, and stop. 

  Why?  We know that an−1 ≡ (am)2s
 ≡ 1 (mod n), and we will not 

find a square root of 1, other than ±1, in repeated squaring of am 

to get an−1. 

 Otherwise, unless s = 1, we square am (mod n) to obtain a2m. 

  If a2m ≡ 1 (mod n), we declare n composite, and stop. 

   Why?  am is a square root of a2m ≡ 1 (mod n), different from 
±1. 

  If a2m ≡ −1 (mod n), we declare n a probable prime, and stop. 

   Why?  Just as above, we know that an−1 ≡ 1 (mod n), and we 
will not find a square root of 1, other than ±1. 

 Otherwise, unless s = 2, we square a2m (mod n) to obtain a22m. 



  If a22m ≡ 1 (mod n), we declare n composite, and stop. 

   Why?  We have found a square root of 1 (mod n), different 
from ±1, just as above 

  If a2m ≡ −1 (mod n), we declare n a probable prime, and stop. 

   Why?  Just above, we know that an−1 ≡ 1 (mod n), and we will 
not find a square root of 1, other than ±1. 

Otherwise we continue in this manner until either (a) we stop the 

test, or (b) we have computed a2s−1m, and stopped if 

a2s−1m ≡ a(n−1)/2 ≡ ±1 (mod n).   

If we haven’t stopped by this point, we declare n composite and 
stop. 

  Why? Exactly as with the Euler test. 

Let us carry out the Rabin-Miller test on the absolute Euler 
pseudoprime 1729, using a = 671. 

1729 − 1 = 1728 = 26⋅27.    So s = 6, m = 27. 

  67127 ≡ 1084      (mod 1729) 

  67127 ⋅2 ≡ 10842 ≡ 1065  (mod 1729) 

  67127 ⋅22
 ≡ 10652 ≡ 1   (mod 1729) 

The test declares n composite, and terminates. 

Next we test a much larger integer, n = 972133929835994161 (also a 
Carmichael number), using a = 2.   

  n − 1 = 24 ⋅60758370614749635. 

 260758370614749635   ≡  338214802923303483  (mod n) 

 22 ⋅60758370614749635  ≡  3382148029233034832  (mod n)   
       ≡  332176174063516118  (mod n) 

 222 ⋅ 60758370614749635 ≡  3321761740635161182  (mod n) 
       ≡  779803551049098051  (mod n) 

223 ⋅60758370614749635 ≡  7798035510490980512  (mod n)  
      ≡  1          (mod n) 

 The test declares n composite, and terminates. 

Next we test an integer that is composite, but not a Carmichael 
number, n = 2857191047211793, using a = 1003. 

 n − 1 = 24 ⋅178574440450737. 

  1003178574440450737  ≡  1135781085623492  (mod n) 

  10032 ⋅178574440450737 ≡  11357810856234922  (mod n) 
         ≡ 84313648747407  (mod n) 

  100322 ⋅178574440450737 ≡  843136487474072  (mod n) 
          2321094267189023 (mod n) 

  100323 ⋅178574440450737 ≡  23210942671890232 (mod n) 
         ≡  978857874792606  (mod n) 

 The test declares n composite, and terminates. 



Finally we test an integer that is in fact prime, n = 104513, using a = 
3. 

 n − 1 = 26 ⋅1633. 

  31633   ≡  88958      (mod n) 

  32 ⋅1633  ≡  889582  ≡  10430 (mod n) 

  322 ⋅1633  ≡  104302  ≡  91380 (mod n) 

  323 ⋅1633  ≡  913802 ≡  29239 (mod n) 

  324 ⋅1633  ≡  292392 ≡  2781  (mod n) 

  325 ⋅1633  ≡  27812  ≡ −1   (mod n)  

 The test concludes that n is a probable prime.  We might perform a 
few more tests before we are convinced that n is in fact prime. 

Like the Fermat and Euler tests, the Rabin-Miller test has 
psuedoprimes (choices of a for which the test declares a composite 
integer to be a probable prime). 

 Rabin-Miller pseudoprimes are called strong pseudoprimes. 

 There are fewer strong pseudoprimes than Fermat or Euler 
pseudoprimes. 

 More importantly, there are no Rabin-Miller absolute pseudoprimes 
(as we had absolute Fermat and Euler absolute pseudoprimes). 

For any odd composite integer n, there are at most ϕ(n)/4 integers a 
(1 ≤ a < n, gcd(a,n) = 1) for which the Rabin-Miller test declares n 
prime. 

 In practice, the number of strong pseudoprimes is usually far, far 
less than ϕ(n)/4, if n is large. 

There are a number of other primality tests, but the Rabin-Miller test is 
the one most commonly used. 

  


