Problem: A farmer has 200 feet of fencing to make a rectangular pen. What are the length and width of the largest area pen that she can make with her fencing?

Let $x=$ width of pen, in $f t$
$y=$ length of pen, in ft

Constraint : $2 x+2 y=200$

$$
\Rightarrow \quad y=100-x
$$

Want to Maximize Area; Let $A=$ area of pen, in ft^{2}.

$$
\begin{aligned}
A & =x \cdot y \\
& =x(100-x) \\
& =100 x-x^{2}
\end{aligned}
$$

Find critical points: X-values where $A^{\prime}=0$ or A^{\prime} DUE $A^{\prime}=100-2 x \quad \Rightarrow \quad A^{\prime}$ exists everywhere,

$$
\begin{aligned}
A^{\prime}=0 & \Rightarrow 0=100-2 x \\
& \Rightarrow x=50
\end{aligned}
$$

Check if $x=50$ is max using second derivative test $\begin{aligned} A^{\prime \prime}=-2<0 & \Rightarrow A \text { is always concave down } \\ & \Rightarrow x=50 \text { is a max }\end{aligned}$ $\Rightarrow x=50$ is a max

Find y

$$
\begin{aligned}
y & =100-x \\
& =50 .
\end{aligned}
$$

The farmer should build her pen with length 50 ft and width 50 ft in order to maximize area.

Problem: A farmer has 200 feet of fencing to make a rectangular pen. What are the length and width of the largest area pen that she can make with her fencing?
$x=$ width of pen
$y=$ length of pen

$$
2 x+2 y=200 \Rightarrow y=100-x
$$

Maximize area

$$
\begin{aligned}
A & =x \cdot y \\
& =x(100-x) \\
& =100 x-x^{2} \\
A^{\prime} & =100-2 x
\end{aligned}
$$

$$
\begin{aligned}
& A^{\prime}=0 \quad A^{\prime} \text { exists everywhere } \\
& 100-2 x=0 \\
& x=50 \\
& A^{\prime \prime}=-2<0 \quad \text { concave down } \Rightarrow x=50 \text { is max } \\
& y=100-x \\
& =50
\end{aligned}
$$

Pen should be $50 \mathrm{ft} \times 50 \mathrm{ft}$.

Problem: A farmer has 200 feet of fencing to make a rectangular pen. What are the length and width of the largest area pen that she can make with her fencing?

$$
\begin{aligned}
& 2 x+2 y=200 \\
& x+y=100 \quad y=100-x \\
& A=x \cdot y \\
& A^{\prime}=x(100-x) \\
& A^{\prime}=100 x-x^{2} \\
& A^{\prime}=10-2 x=0 \\
& x=50 \\
& A^{\prime \prime}=-2<0 \quad \mathrm{cu} \\
& y=50
\end{aligned}
$$

Problem: A farmer has 200 feet of fencing to make a rectangular pen. What are the length and width of the largest area pen that she can make with her fencing?

$$
\begin{aligned}
& \begin{aligned}
2 x+2 y=200 \quad 2 y & =200-2 x \\
y & =100 x^{-2}
\end{aligned} \\
& (100-x) \cdot x \\
& 100 x-x^{2} \\
& 100-2 x \quad x=50 \\
& y=50 \\
& \begin{array}{r}
100 \\
50 \\
50
\end{array} \\
& -2 \text { cu. } \\
& 50 \mathrm{ft} \times 50 \mathrm{gh}
\end{aligned}
$$

