Calc 3 Cylindrical and Spherical Integral Practice

For all these problems, you must use either spherical or cylindrical coordinates.

- 1. Sketch the region over which the integration is being performed: $\int_0^{\pi/2} \int_{\pi/2}^{\pi} \int_0^1 f(\rho, \theta, \phi) \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$
- 2. * Evaluate $\iiint_R y \, dV$, where R is the solid that lies between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$, above the x, y plane, and below the plane z = x + 2. (0)
- 3. Evaluate $\iiint_R x e^{(x^2+y^2+z^2)^2} dV$, where *R* is the solid that lies between the spheres $x^2+y^2+z^2 = 1$ and $x^2+y^2+z^2 = 4$ in the first octant. $(\frac{\pi}{16}(e^{16}-e))$
- 4. Evaluate $\iiint_R x^2 \, dV$, where R is the solid that lies within the cylinder $x^2 + y^2 = 1$, above the plane z = 0, and below the cone $z^2 = 4x^2 + 4y^2$. $(2\pi/5)$
- 5. Find the volume of the solid that lies above the cone $\phi = \pi/3$ and below the sphere $\rho = 4\cos\phi$. (10 π)
- 6. Find the mass of the solid bounded above by the hemisphere $z = \sqrt{25 x^2 y^2}$ and below by the plane z = 4 where the density at a point P is inversely proportional to the distance from the origin. [Hint: Express the upper ϕ limit of integration as an inverse cosine.] (πk)
- 7. Challenge: Find the mass of the solid bounded below by the x y plane, on the sides by the hemisphere $z = \sqrt{25 x^2 y^2}$, and above by the plane z = 4, where the density at a point P is inversely proportional to the distance from the origin. [Hint: Express the upper ϕ limit of integration as an inverse cosine.] ()
- 8. Evaluate the integrals below by changing to either spherical or cylindrical coordinates, whichever is more appropriate.

(a) *
$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{x^2+y^2}^{2-x^2-y^2} (x^2+y^2)^{3/2} dz dy dx$$
(8 π /35)

(b)
$$\int_{-3}^{3} \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} \int_{0}^{\sqrt{9-x^2-y^2}} z\sqrt{x^2+y^2+z^2} \, dz \, dy \, dx$$
 (243 π /5)

(c)
$$\int_0^1 \int_{-1}^1 \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{1}{\sqrt{x^2+y^2}} \, dy \, dx \, dz$$
 (2 π)

(d)
$$\int_{0}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{-\sqrt{1-x^{2}-z^{2}}}^{\sqrt{1-x^{2}-z^{2}}} \frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}} \, dy \, dz \, dx \tag{(\pi)}$$