Math 250 Line Integral Fun Pack

Evaluate the following line integrals, for fun, and as a small part of your preparation for your exam! Use FTLI or Green's Theorem when you can. Unless otherwise specified, assume a CCW orientation on all closed curves.

1. $\int_{C} \frac{2 x}{x^{2}+y^{2}} d x+\frac{2 y}{x^{2}+y^{2}} d y$ where C is the part of the clockwise oriented circle $(x-6)^{2}+(y-3)^{2}=49$ from $(13,3)$ to $(-1,3)$
2. $\int_{C} x y^{4} d s$, where C is the right half of the circle $x^{2}+y^{2}=16$
3. $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}(x, y, z)=(y z, x z, x y)$ and C is given by $\vec{r}(t)=\left(t, t^{2}, t^{3}\right), 0 \leq t \leq 2$
4. $\int_{C} x^{2} y \sqrt{z} d z$, where C is given by $x=t^{3}, y=t, z=t^{2}, 0 \leq t \leq 1$
5. $\int_{C}(2 x+9 z) d s$, where C is given by $x=t, y=t^{2}, z=t^{3}, 0 \leq t \leq 1$
6. $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}(x, y)=\left(x^{2} y^{2}, 4 x y^{3}\right)$ and C is the triangle with vertices $(0,0),(1,3)$, and $(0,3)$
7. $\int_{C} x e^{y} d s$, where C is the arc of the curve $x=e^{y}$ from $(1,0)$ to $(e, 1)$
8. $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}(x, y)=(y, x+2 y)$ and C is the upper semicircle starting at $(0,1)$ and ending at $(2,1)$
9. $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}(x, y)=\left(x e^{-2 x}, x^{2}+2 x^{2} y^{2}\right)$ and C is the boundary of the region between the circles $x^{2}+y^{2}=1$ (oriented CW) and $x^{2}+y^{2}=4$ (oriented CCW).
10. $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}(x, y, z)=(\sin x, \cos y, x z)$ and C is given by $\vec{r}(t)=\left(t^{3},-t^{2}, t\right), 0 \leq t \leq 1$
11. $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}(x, y, z)=\left(y^{2} \cos z, 2 x y \cos z,-x y^{2} \sin z\right)$, where C is given by $x=t^{2}, y=\sin t, z=t, 0 \leq t \leq 1$
12. $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}(x, y)=\left(x^{3} y^{4}, x^{4} y^{3}\right), C$ is $x=\sqrt{t}, y=1+t^{3}, 0 \leq t \leq 1$
13. $\int_{C} x y d x+(x-y) d y$, where C consists of line segments from $(0,0)$ to $(2,0)$ and from $(2,0)$ to $(3,2)$
14. $\int_{C} e^{y} d x+2 x e^{y} d y$, where C is the square with sides $x=0, x=1, y=0$, and $y=1$, oriented CW.
15. $\int_{C} \sin y d x+x \cos y d y$, where C is the ellipse $x^{2}+x y+y^{2}=1$.
16. $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}(x, y, z)=\left(2 x z+y^{2}, 2 x y, x^{2}+3 z^{2}\right)$, where C is any curve from $(0,1,-1)$ to $(1,2,0)$
17. $\int_{C} x^{2} d x+y^{2} d y+z^{2} d z$, where C consists of line segments from $(0,0,0)$ to $(1,2,-1)$ and from $(1,2,-1)$ to $(3,2,0)$
18. $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}(x, y)=\left(x^{2} y^{3},-y \sqrt{x}\right)$ and C is given by $\vec{r}(t)=\left(t,-t^{3}\right), 0 \leq t \leq 1$
19. $\int_{C} z d x+x d y+y d z$, where C is given by $x=t^{3}, y=t^{3}, z=t^{2}, 0 \leq t \leq 1$
20. $\int_{C} y / x d s$, where C is given by $x=t^{4}, y=t^{3}, 1 / 2 \leq t \leq 2$
21. $\int_{C} \vec{F} \cdot d \vec{r}$, where $\left.\vec{F}(x, y, z)=\left(e^{y}, x e^{y},(z+1) e^{z}\right)\right)$, where C is given by $x=t, y=t^{2}, z=t^{3}, 0 \leq t \leq 1$
22. $\int_{C} x y^{3} d s$, where C is given by $x=4 \sin t, y=4 \cos t, z=3 t, 0 \leq t \leq \pi / 2$
23. $\int_{C}(x y+\ln x) d y$, where C is the arc of the parabola $y=x^{2}$ from $(1,1)$ to $(3,9)$
24. $\int_{C} x y d s$, where C is the arc of the parabola $y=x^{2}$ from $(1,1)$ to $(3,9)$
25. $\int_{C} y^{3} d x-x^{3} d y$, where C is the circle $x^{2}+y^{2}=4$.
26. $\int_{C} y d s$, where C is given by $x=t^{2}, y=t, 0 \leq t \leq 2$
27. $\int_{C} x^{2} z d s$, where C is the line segment from $(0,6,-1)$ to $(4,1,5)$
28. $\int_{C} x e^{y} d x$, where C is the arc of the curve $x=e^{y}$ from $(1,0)$ to $(e, 1)$
29. $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}(x, y)=\left(\frac{y^{2}}{1+x^{2}}, 2 y \arctan x\right), C$ is $x=t^{2}, y=2 t, 0 \leq t \leq 1$
30. $\int_{C}(x+y z) d x+2 x d y+x y z d z$, where C consists of line segments from $(1,0,1)$ to $(2,3,1)$ and from $(2,3,1)$, to $(2,5,2)$
31. $\int_{C}\left(y+e^{\sqrt{x}}\right) d x+\left(2 x+\cos y^{2}\right) d y$, where C is the boundary of the region enclosed by the parabolas $y=x^{2}$ and $x=y^{2}$.
32. $\int_{C} x e^{y z} d s$, where C is the line segment from $(0,0,0)$ to $(1,2,3)$
33. $\int_{C} y e^{x} d s$, where C is the line segment joining $(1,2)$ to $(4,7)$
34. $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}(x, y, z)=(z, y,-x)$ and C is given by $\vec{r}(t)=(t, \sin t, \cos t), 0 \leq t \leq \pi$

Math 250 Line Integral Fun Pack - Hints and Answers

Please email answers to me as you work through these problems, and I will keep an updated list of answers on our website.

1. FTLI, $\ln 10-\ln 178$
2. $\mathrm{RV}, 2^{13} / 5$
3. VF, 64
4. VF, $1 / 5$
5. RV, $\frac{1}{6}\left(14^{3 / 2}-1\right)$
6. Green, $318 / 5$
7. $\mathrm{RV}, \frac{1}{3}\left[\left(e^{2}+1\right)^{3 / 2}-2^{3 / 2}\right]$
8. FTLI, 2
9. Green, 0
10. VF, $\sin (-1)-\cos 1+6 / 5$
11. FTLI, $\sin ^{2} 1 \cos 1$
12. FTLI, 4
13. VF, $17 / 3$
14. Green, $1-e$
15. FTLI or Green, 0
16. FTLI, 5
17. VF, $35 / 3$
18. VF,$-\frac{1}{12}-\frac{6}{13}$
19. VF, $3 / 2$
20. $\mathrm{RV}, \frac{1}{48}\left(73^{3 / 2}-13^{3 / 2}\right)$
21. FTLI, $2 e$
22. RV, 320
23. VF, $\frac{484}{5}+9 \ln 3-4$
24. RV, $\frac{1}{16}\left[\frac{1}{5}\left(37^{5 / 2}-5^{5 / 2}\right)-\frac{1}{3}\left(37^{3 / 2}-5^{3 / 2}\right)\right]$
25. Green, -24π
26. $\mathrm{RV}, \frac{1}{12}\left(17^{3 / 2}-1\right)$
27. RV, $\sqrt{77}(56 / 3)$
28. VF, $\left(e^{3}-1\right) / 3$
29. FTLI, π
30. VF, $97 / 3$
31. Green, $1 / 3$
32. $\mathrm{RV}, \frac{\sqrt{14}}{12}\left(e^{6}-1\right)$
33. RV, $2 \sqrt{34} e^{4}$
34. VF, π
