Math 250 Surface Integral Fun Pack !

Of course, this is just the beginning. You should do many, many more to prepare for your final!

1. Calculate the outward flux of $\vec{F}(x, y, z)=(x, 2 y, 3 z)$ across the boundary of the first-octant unit cube with opposite vertices $(0,0,0)$ and $(1,1,1)$.
2. Calculate the line integral of $\vec{F}=\left(x^{2} y^{3}, 1, z\right)$ over the curve created by the intersection of the cylinder $x^{2}+y^{2}=4$ and the top half of $x^{2}+y^{2}+z^{2}=16$, oriented CW when viewed from above.
3. Evaluate the integral of $\vec{F}(x, y, z)=(x, y, 0)$ over the surface S, which is the hemisphere $z=$ $\sqrt{9-x^{2}-y^{2}}$ with upward pointing normal vector.
4. Integrate $\vec{F}(x, y, z)=\left(x, y, z^{4}\right)$ over part of the cone $z=\sqrt{x^{2}+y^{2}}$ beneath the plane $z=1$ with downward orientation.
5. Calculate the inward flux of $\vec{F}(x, y, z)=\left(0,0, z^{2}\right)$ across S, which is the boundary of the solid bounded by the paraboloids $z=x^{2}+y^{2}$ and $z=18-x^{2}-y^{2}$.
6. Calculate the flux of the curl of $\vec{F}(x, y, z)=\left(3 y, 5-2 x, z^{2}-2\right)$ over the top half of the sphere of radius $\sqrt{3}$, with upward orientation.
7. Integrate $\vec{F}(x, y, z)=(y,-x, 0)$ over the surface S that is the part of the cone $z=r$ with outward orientation that lies within the cylinder $r=3$.
8. Evaluate the surface integral of $\vec{F}(x, y, z)=(x y, y z, z x)$ over the part of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the square $0 \leq x \leq 1$ and $0 \leq y \leq 1$, orientated downward.
9. Integrate $\vec{F}(x, y, z)=\left(x z e^{y},-x z e^{y}, z\right)$ over the part of the plane $x+y+z=1$ in the first octant with downward orientation.
10. Compute $\oint_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}=\left(\sin x^{2}, e^{y^{2}}+x^{2}, z^{4}+2 x^{2}\right)$ and C is the triangle with edges from $(3,0,0)$ to $(0,2,0)$ to $(0,0,1)$ and back to $(3,0,0)$.
11. Integrate $\vec{F}(x, y, z)=(y,-x, 0)$ over the surface S that consists of the part of the cone $z=r$ that lies within the cylinder $r=3$, together with the lid made of a disk of radius 3 at height $z=3$, oriented inward.
12. Find the integral of $\vec{F}(x, y, z)=(x, y, z)$ over S, where S is the part of the plane $z=3 x+2$ (with upward orientation) that lies within the cylinder $x^{2}+y^{2}=4$.
13. Calculate $\iint_{S} \vec{F} \cdot d \vec{S}$, where $\vec{F}(x, y, z)=(x, y, z)$ and S is the sphere $x^{2}+y^{2}+z^{2}=9$. Use the outward normal.
14. Compute $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}(x, y, z)=\left(-y \sin x+\frac{y^{3}}{3}, \cos x+\frac{x^{3}}{3}, x y z\right)$ and C is the circle $x^{2}+y^{2}=1$ in the plane $z=1$, oriented CCW when viewed from above.
15. Evaluate the integral of $\vec{F}(x, y, z)=(0, y,-z)$ over S, which consists of the paraboloid $y=x^{2}+z^{2}$, $0 \leq y \leq 1$, and the disk $x^{2}+z^{2} \leq 1, y=1$. Use the outward normal.
16. Integrate the curl of $\vec{F}(x, y, z)=\left(x, y, z^{4}\right)$ over part of the cone $z=\sqrt{x^{2}+y^{2}}$ beneath the plane $z=1$ with downward orientation.
17. Calculate the flux of $\vec{F}(x, y, z)=(x,-y, 0)$ outward across the boundary of the solid first-octant pyramid bounded by the coordinate planes and the plane $3 x+4 y+z=12$.

Math 250 Surface Integral Fun Pack Hints and Answers !

1. 6 , divergence
2. 8π, stokes
3. 36π, directly
4. $\pi / 3$, directly
5. -1458π, divergence
6. -15π, stokes
7. 0 , directly
8. $-713 / 180$, directly
9. $-1 / 6$, directly
10. 0, stokes
11. 0, divergence
12. 8π, directly
13. 108π, divergence
14. 0 , stokes
15. 0 , divergence
16. 0, stokes
17. 0 , divergence
