LATEX Class Review by *

While starting from the beginning may be helpful, I feel it will be more helpful to me, since I plan on using this as a study guide, to start a little further into the course (bypassing ideas that we have learned in other classes like 1-1 and onto, and bypassing some basic ideas such as what a topology is, the definition of an open set, continuity, etc.) focusing on what I feel are the more complicated ideas and providing examples. Also, while defining complicated ideas, I will treat them the way we did the definition quiz in class, defining all the key components that have yet to be defined in these notes.

Definition: Basis - A basis β for a topology T on a space X is a set so that every set in T can be obtained by taking arbitrary unions and finite intersections of elements of β.

Definition: Homeomorphic - Two spaces are homeomorphic if there exists a homeomorphism between them.

Note: A homeomorphism is a bijection between points in X and points in Y and between open sets in X and open sets in Y.

Definition: Homeomorphism - A homeomorphism between two spaces X and Y exists if there exists a bijection $f: X \rightarrow Y$ such that f and $f^{-} 1$ are both continuous.

Definition: Bijection - $f: X \rightarrow Y$ is a bijection if it is one-to-one and onto.

Definition: Constant Map - $C: X \rightarrow Y$ is considered a constant map if there exists a $c \in Y$ such that for all $x \in X, C(x)=c$.

Note - A function $f: X \rightarrow Y$ is called constant if there is some $c \in Y$ so that $f(x)=c$ for every $x \in X$.

Definition: Homotopic - Two maps $f, g: X \rightarrow Y$ are homotopic if there exists a map F : $X \times I \rightarrow Y$ such that for each $x \in X$,

$$
\begin{aligned}
& F(x, 0)=f(x) \\
& F(x, 1)=g(x)
\end{aligned}
$$

We write $f \simeq g$ or F is a homotopy between f and g.
Note: Homotopic paths must follow third and fourth properties, that

$$
\begin{aligned}
& F(0, t)=x_{0} \\
& F(1, t)=x_{1}
\end{aligned}
$$

If the paths are loops then $x_{0}=x_{1}$. [Remember, the path/loop is the actual map, not the image.]

Nulhomotopic - The function $f: X \rightarrow Y$ is nulhomotopic if it is homotopic to a constant map.
Additional Thought: Two maps $f, g:(X, A) \rightarrow(Y, B)$ are homotopic rel A, written as $f \sim g$ rel A, if there exists a homotopy $F: X \times I, A \times I) \rightarrow(Y, B)$ that follows the first two criteria of a homotopy and if for all $x \in A$

$$
F(x, t)=F(x, 0)
$$

The idea is that during the homotopy the points in A do not move, they remain constant thought out the homotopy.

Definition: Contractible - A space is called contractible if it is homotopic equivalent to a point

Lemma : Regarding Contractible Spaces [Proved in Class] - Let X be any space and let p be any arbitrary point. If $X=p$ then $X \simeq p$.

Definition: Homotopy Equivalent - Two spaces X and Y are homotopy equivalent if there exists maps $f: X \rightarrow Y$, and $g: Y \rightarrow X$ such that

$$
\begin{aligned}
& g \circ f \simeq I_{X} \\
& f \circ g \simeq I_{Y}
\end{aligned}
$$

[Where I_{X} is the identity map $I_{X}: X \rightarrow X$ by $I_{X}(x)=x$ and $I_{Y}: Y \rightarrow Y$ by $I_{Y}(y)=y$].
Example of Homotopy Equivalent: Prove the unit disk in \mathbb{R}^{2} is contractible [Aka - homotopy equivalent to a point].

Proof: - Let $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$ and p be some arbitrary point in \mathbb{R}^{2}. Define:

$$
f: D \rightarrow\{p\} \text { by } f(x, y)=p \forall(x, y) \in D
$$

Further define:

$$
g:\{p\} \rightarrow D \text { by } g(p)=(0,0)
$$

Consider the function $f \circ g:\{p\} \rightarrow\{p\}=f \circ g(p)=p$.
Notice that this is the same as $I_{\{p\}}:\{p\} \rightarrow\{p\}$ by $I_{\{p\}} p(p)=p$.
From the lemma above, we know $f \circ g \simeq I_{\{p\}}$.
Now, consider $g \circ f: D \rightarrow D$, we know

$$
g \circ f(x, y)=g(f(x, y))=g(p)=(0,0)
$$

Also, consider that $I_{D}(x, y)=(x, y)$.
Define: $F: D \times I \rightarrow D$ by $F((x, y), t)=(x(1-t), y(1-t))$. Note, this straight line homotopy exists entirely in D due to our definition of D . Now,

$$
\begin{aligned}
F((x, y), 0) & =(x(1-0), y(1-0)) \\
& =(x, y) \\
& =I_{D}(x, y)
\end{aligned}
$$

$$
\begin{aligned}
F((x, y), 1) & =(x(1-1), y(1-1)) \\
& =(0,0) \\
& =g \circ f(x, y)
\end{aligned}
$$

Also, F is built on continuous polynomials so it too is continuous.
Thus $I_{D} \simeq g \circ f$. Therefore D is contractible [homotopy equivalent to a point]

Definition: Convex - Let C be an arbitrary space. C is convex if and only if for all $x, y \in C$, the straight line segment connecting them is contained entirely in C. $[C$ is convex iff for all $x, y \in C$ the set $\{t x+(1-t) y: t \in[0,1]\}$ is a subset of $C]$

Definition: Homotopy classes of loops - Let α, β be loops with $\alpha(0)=\beta(0)$ then $\alpha \simeq \beta$ rel ∂I if and only if there exists a map $f: I \times I \rightarrow X$ such that

$$
\begin{gathered}
F(s, 0)=\alpha(s) \\
F(s, 1)=\beta(s) \\
F(0 \text { or }, t)=\alpha(0)
\end{gathered}
$$

Homotopy Class of Loop α based at $x_{0} \in X$. -

$$
[\alpha]=\left\{\beta:(I, \partial I) \rightarrow\left(X, x_{0}\right) \mid \alpha \simeq \beta \text { rel } \partial I\right\}
$$

Definition: Constant Loop - The constant loop C in space X based at $x_{0} \in X$ is defined as

$$
C:(I, \partial I) \rightarrow\left(X, x_{0}\right) \text { by } C(s)=x_{0} .
$$

Definition: Group - a set [G] with an operation [*] that acts on the set *: $G \times G \rightarrow G$ with the three properties: 1 . identity 2 . inverse 3 . associative.

Definition: Identity - In set G, with operation \cdot, there exists $e \in G$ such that for all $g \in G$, $e \cdot g=g=g \cdot e$.

Definition: Inverse - In set G, with operation •, for all $g \in G$, there exists $h \in G$, such that $g \cdot h=e=h \times g$

Definition: Associative - In set G, with operation \cdot, for all $g, j, h \in G,(g \cdot h) \cdot j=g \cdot(h \cdot j)$.
Fundamental Group of \mathbf{X} based at $x_{0} \in X-\pi_{1}\left(X, x_{0}\right)$ is the set of all homotopy classes of all loops based at x_{0}, fully defined below. Let $\alpha, \beta:(I, \partial I) \rightarrow\left(X, x_{0}\right)$ where $\alpha \cdot \beta:(I, \partial I) \rightarrow\left(X, x_{0}\right)$ by $\alpha \cdot \beta(s)$ as defined below.
[Group] $-\pi_{1}\left(X, x_{0}\right)=[\alpha]: \alpha:(I, \partial I) \rightarrow\left(X, x_{0}\right)$
[Operation] $-[\alpha] \cdot[\beta]=[\alpha \cdot \beta]$ and

$$
\alpha \cdot \beta(s)= \begin{cases}\alpha(2 s) & \text { for } s \in[0, .5] \\ \beta(2 s-1) & \text { for } s \in[.5,1]\end{cases}
$$

[Take note that we can only define multiplication of loops if they have the same base points. Also, the idea behind $\alpha \cdot \beta$ is that is spends the first $1 / 2$ of the time mapping α and the second $1 / 2$ of the time mapping β making one big continuous loop.]
Note: In class we proved that for all $x \in X, \pi_{1}\left(X, x_{0}\right)$ is a group [aka-the fundamental group is in fact a group]. Had to prove it satisfied the three properties to be a group, and the operation had to be well-defined and continuous.

Definition: Well-defined - If $\left[\alpha_{1}\right]=\left[\alpha_{2}\right]$ and $\left[\beta_{1}\right]=\left[\beta_{2}\right]$ then

$$
\left[\alpha_{1} \cdot \beta_{1}\right]=\left[\alpha_{2} \cdot \beta_{2}\right] .
$$

Prop 17.1 - Used to prove the fundamental group operation is continuous.
Let $f: X \rightarrow Y$ and $X=A \cup B$. If f rel A and f rel B are continuous, the f is continuous.

Definition: Homomorphic - Two groups with operations $\left(G, *_{g}\right)$ and $\left(H, *_{h}\right)$ are homomorphic if there exists a function $f: G \rightarrow H$ such that for all $g_{1}, g_{2} \in G$

$$
f\left(g_{1} *_{g} g_{2}\right)=f\left(g_{1}\right) *_{h} f\left(g_{2}\right) .
$$

Definition: Isomorphic - $[G \cong H]$ - Two groups with operations $(G, * g)$ and $(H, * h)$ are isomorphic if there exists a function $f: G \rightarrow H$ that is a bijective homomorphism.
Fact: Any space X is simply connected if it is path connected and the fundamental group of X is isomorphic to the trivial group. So, far all $x_{0} \in X$,

$$
\pi_{1}\left(X, x_{0}\right) \cong\{\mathbf{1}\}
$$

Trivial Group - \{1\}- The trivial fundamental group, commonly denoted as $\{1\}$, is equal to the constant loop.

$$
\pi_{1}\left(X, x_{0}\right)=[\alpha]: C:(I, \partial I) \rightarrow\left(X, x_{0}\right)
$$

Theorem - $\pi_{1}\left(S_{1},(1,0)\right) \cong \mathbb{Z}$

Lemma : Unique Path Lifting Lemma[Proved in Class] - Let $\alpha:(I, \partial I) \rightarrow\left(S_{1},(1,0)\right)$ and $\pi \mathbb{R} \rightarrow S_{1}$ by $\pi(r)=(\cos 2 \pi r, \sin 2 \pi r)$. There exists a unique path $\widetilde{\alpha}: I \rightarrow \mathbb{R}$ with $\widetilde{\alpha}(0)=0$ and for all $s \in I, \pi \circ \widetilde{\alpha}(s)=\alpha(s)$.
Here is the commutative diagram. [In the diagram $w=\pi(r)$.]

Figure 1: Lifting a loop from the circle to the real line.
Note: The Unique Path Lifting Lemma was used to prove $\pi_{1}\left(S_{1},(1,0)\right) \cong \mathbb{Z}$. To prove this lemma we used the idea of local homeomorphism. Ideally we would like $\widetilde{\alpha}=\pi^{-1} \circ \alpha$ but π in not invertible. However, it is invertible rel A, where A is an interval in \mathbb{R} of length <1. We defined a u and v so that $u=S^{1}-(-1,0)$ and $v=S^{1}-(1,0)$, thus u and v are open sets where $u \cup v=S^{1}$, and $\alpha^{-1}(u)$ and $\alpha^{-1}(v)$ are open sets and $\alpha^{-1}(u) \cup \alpha^{-1}(u)=I$. This breaks I into segments so that the interval $\alpha\left(\left[t_{i}, t_{i+1}, \ldots\right]\right) \subseteq u$ or v. The function $f: \pi_{1}\left(S_{1},(1,0)\right) \rightarrow \mathbb{Z}$ maps loops to integers. It is a function which associates α with the number of times the image of α wraps around S^{1}.

Definition: Strong Defamation Retraction (sdr) - Let $A \subseteq X$ and the function $r: X \rightarrow A$ be a retraction. r is a sdr if $I_{x} \simeq r \operatorname{rel} A$.

There is a sdr if you can formulate(or picture) a function that smoothly moves all points in X onto A. [Think homework]
Retraction of \mathbf{X} onto \mathbf{A} - A continuous function $r: X \rightarrow A$ with $r / A=I_{A}$. Can be understood as, $r \circ i=I_{A}$. The idea is that elements outside of A get moved onto A and elements of A are fixed.

Note: $i: A \rightarrow A$ is called the inclusion map. For all $a \in A, i(a)=a$.

Corollary - D^{2} does not retract onto S^{1}. Aka - There is no retraction $r: D^{2} \rightarrow S^{2}$. Proof through contradiction or though commutative diagrams with fundamental groups.
Commutative Diagram Proof Idea - The problem lies in that $\Pi_{1}\left(D^{2},(1,0)\right) \cong\{1\}$. The identity map dent $_{*}$ (diagnal line from $\Pi_{1}\left(S^{1},(1,0)\right)$ to $\Pi_{1}\left(S^{1},(1,0)\right)$) maps every \mathbb{Z} to itself while $r_{*} \circ i_{*}$ only maps to one element in the bottom $\Pi_{1}\left(S^{1},(1,0)\right)$. Thus, $\Pi_{1}\left(S^{1},(1,0)\right) \neq$ $I^{2} e^{*} t_{*}$. This idea is based off Prop. 3.24.A which is discussed later.

Proof: Suppose $r: D^{2} \rightarrow S^{1}$ is a retraction. From the path lifting lemma proof we know

The retraction $r: D^{2} \rightarrow S^{1}$ gives a map $r / S^{1}: S^{1} \rightarrow S^{1}$ which is the identity map.
Recall homework 5 problem 2, where we have $\alpha:\left(S^{1},(1,0)\right) \rightarrow\left(X, x_{0}\right)$. Let the identity map be this α. Now we have a map $r: D^{2} \rightarrow S^{1}$ such that $r / \partial D^{2}=\alpha$. Therefore there exists $\alpha^{*}:(I, \partial I) \rightarrow S^{1}$ with $\alpha^{*} \simeq c$ rel ∂I. Thus,

$$
\begin{gathered}
\phi\left(\left[\alpha^{*}\right]\right)=1 \text { because the image of } \alpha^{*} \text { wraps } 1 \text { time around } S^{1} . \\
\phi([c])=0 \text { because the image of } c \text { wraps } 0 \text { times around } S^{1} .
\end{gathered}
$$

But $\alpha^{*} \simeq c$ rel ∂I so $\left[\alpha^{*}\right]=[c]$, so this contradicts ϕ being well-defined. Therefore there cannot be a retraction $r: D^{2} \rightarrow S^{1}$.

Theorem : Brower Fixed Point Theorem - Every continuous $f: D^{1} \rightarrow D^{1}$ has a fixed point. Use corollary above to prove.

Definition: Induced Homomorphism on Π_{1} - Suppose there is a function $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ and suppose $\alpha:(I, \partial I) \rightarrow\left(X, x_{0}\right)$ is a loop in X. Then $f \circ \alpha:(I, \partial I) \rightarrow\left(Y, y_{0}\right)$ is a loop in Y. This gives a map $f_{*}: \Pi_{1}\left(X, x_{0}\right) \rightarrow \Pi_{1}\left(Y, y_{0}\right)$ by

$$
f_{*}([\alpha])=[f \circ \alpha]
$$

f_{*} is call the induced map on Π_{1} and is a well-defined homomorphism, which will be proved now.
Proof: : f_{*} from above is a well-defined homomorphism -
Well-Defined - Let $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ and let $\alpha:(I, \partial I) \rightarrow\left(X, x_{0}\right)$ be a loop in X.
Assume there exists $f_{*}: \Pi_{1}\left(X, x_{0}\right) \rightarrow \Pi_{1}\left(Y, y_{0}\right)$ by $f_{*}([\alpha])=[f \circ \alpha]$.
Prove that if $\alpha \simeq \beta$ rel ∂I then $f \circ \alpha \simeq f \circ \beta$ rel ∂I or, If $[\alpha]=[\beta]$ then $f_{*}([\alpha])=f_{*}([\beta])$.
Proof - Let $\alpha, \beta:(I, \partial I) \rightarrow\left(X, x_{0}\right)$ be loops in X. Let $[\alpha]=[\beta]$. Finally, let $f:\left(X, x_{0}\right) \rightarrow$ $\left(Y, y_{0}\right)$. Then $f \circ \alpha, f \circ \beta:(I, \partial I) \rightarrow\left(Y, y_{0}\right)$.
Assume $\alpha \simeq \beta$ rel ∂I so we know there exists a homotopy, say $H(s, t):(I \times I, \partial I \times I) \rightarrow\left(Y, y_{0}\right)$ such that

$$
\begin{gathered}
H(s, 0)=\alpha(s) \\
H(s, 1)=\beta(s) \\
H(0, t)=x_{0} \\
H(1, t)=x_{0}
\end{gathered}
$$

Define another homotopy $F(s, t):(I \times I, \partial I \times I) \rightarrow\left(Y, y_{0}\right)$ by $F(s, t)=f \circ H(s, t)$. So,

$$
\begin{gathered}
F(s, 0)=f \circ H(s, 0)=f \circ \alpha(s) \\
F(s, 1)=f \circ H(s, 1)=f \circ \beta(s) \\
F(0, t)=f \circ H(0, t)=f \circ x_{0}=f\left(x_{0}\right)=y_{0} \\
F(1, t)=f \circ H(1, t)=f \circ x_{0}=f\left(x_{0}\right)=y_{0} .
\end{gathered}
$$

Notice that F is a composition of the continuous function f and the homotopy H, so it is clearly continuous.
Thus, F is a homotopy from $f \circ \alpha$ to $f \circ \beta$ rel ∂I.
So $f \circ \alpha \simeq f \circ \beta$ rel ∂I therefore $[f \circ \alpha]=[f \circ \beta]$ hence $f_{*}([\alpha])=f_{*}([\beta])$ which is what we need to show f_{*} is well-defined.
Proof of f_{*} being a homomorphism. Aka - $f_{*}([\alpha]) \cdot \Pi_{Y} f_{*}([\beta])=f_{*}\left([\alpha] \cdot \Pi_{X}[\beta]\right)$ for all $[\alpha],[\beta] \in \Pi_{1}\left(X, x_{0}\right)$.
Let $[\alpha],[\beta] \in \Pi_{1}\left(X, x_{0}\right)$ then LHS

$$
\begin{aligned}
f_{*}([\alpha]) \cdot f_{*}([\beta]) & =[f \circ \alpha] \cdot[f \circ \beta] \\
& =[f \circ \alpha \cdot f \circ \beta]
\end{aligned}
$$

where $(f \circ \alpha \cdot f \circ \beta)(s)= \begin{cases}f \circ \alpha(2 s) & \text { for } s \in[0,1 / 2] \\ f \circ \beta(2 s-1) & \text { for } s \in[1 / 2,1]\end{cases}$

Next, RHS

$$
\begin{aligned}
f_{*}([\alpha \cdot \beta]) & =f_{*}([\alpha \circ \beta] \\
& =[f \circ(\alpha \cdot \beta)]
\end{aligned}
$$

$$
\text { where } f \circ \alpha \cdot \beta)=f\left(\left\{\begin{array}{ll}
\alpha(2 s) & \text { for } s \in[0,1 / 2] \\
\beta(2 s-1) & \text { for } s \in[1 / 2,1]
\end{array}\right)\right.
$$

It is clear to see that LHS $=$ RHS. Thus, f_{*} is a homomorphism. Now, we have proved that f_{*} is a well-defined homomorphism.

Prop. 3.24.A - Fundamental Group Maps(Commutative Diagrams)

1. If there exists situation $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ and $g:\left(Y, y_{0}\right) \rightarrow\left(Z, z_{0}\right)$ then $(g \circ f)_{*}=$ $g_{*} \circ f_{*}$.
2. If $I_{X}:\left(X, x_{0}\right) \rightarrow\left(X, x_{0}\right)$ is the identity map the space X then $\left(I_{X}\right)_{*}: \Pi_{1}\left(X, x_{0}\right) \rightarrow$ $\Pi_{1}\left(X, x_{0}\right)$ is the identity map on the group $\Pi_{1}\left(X, x_{0}\right)$.
Prop. 3.24.B - Fundamental Group Maps
If $f \simeq g:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ rel x_{0} then $f_{*}=g_{*}: \Pi_{1}\left(X, x_{0}\right) \rightarrow \Pi_{1}\left(Y, y_{0}\right)$. Proved in class - Idea is that we need to show $f_{*}([\alpha])=g_{*}([\alpha])$ by $f_{*}([\alpha])=[f \circ \alpha]=[g \circ \alpha]=g_{*}([\alpha])$. Middle steps were proved in homework 7, problem 4.

Theorem - If $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ is a homeomorphism the $f_{*}: \Pi\left(X, x_{0}\right) \rightarrow \Pi\left(Y, y_{0}\right)$ is an isomorphism. [Proved in class - idea - We've proved f_{*} is a homeomorphism, just need to show f_{*} has an inverse]
Sketch proof - Claim g_{*} is inverse of f_{*}. So $g_{*} \circ f_{*}=(g \circ f)_{*}\left[\right.$ from prop. 3.24.A.1] $=\left(I_{X}\right)_{*}[$ because $g=$ f^{-1}] $=$ identity on $\Pi_{1}\left(X, x_{0}\right)$ [from prop 3.24.A.2] and $f_{*} \circ g_{*}=(f \circ g)_{*}=\left(I_{Y}\right)_{*}=$ identity on $\Pi_{1}\left(Y, y_{0}\right)$. So, g_{*} is the inverse of f_{*} therefore f_{*} is invertible and is thus 1-1 and onto.

Corollary to prop 3.24.B - If $r: X \rightarrow A$ is a strong deformation retraction $\left[I_{X} \simeq r\right]$ then $\Pi\left(X, x_{0}\right) \cong \Pi\left(A, x_{0}\right)$. This corollary was used heavily on homework 9 to find the fundamental groups of weird spaces by sdr-ing them to spaces we know the fundamental group of. Spaces we know the fundamental group of and used in homework 9 are:

1. $\quad \Pi_{1}\left(S^{1}, x_{0}\right) \cong \mathbb{Z}$ furthermore the wedge of two circles $\cong \mathbb{Z} * \mathbb{Z}$ [* is the "free product"]
2. $\quad \Pi_{1}\left(S^{2}, x_{0}\right) \cong\{1\}$ furthermore the wedge of two spheres $\cong\{1\} *\{1\} \cong\{1\}[*$ is the "free product"]
3. $\quad \Pi_{1}\left(\mathbb{R} P^{2}, y_{0}\right) \cong \Pi_{1}\left(X, x_{0}\right) \cong \mathbb{Z}_{2}$
4. [Annulus: $\left.S^{1} \times I\right]-\Pi_{1}\left(S^{1} \times I,\left(x_{0} . y_{0}\right)\right) \cong \Pi_{1}\left(S^{1}, x_{0}\right) \times \Pi_{1}\left(I, y_{0}\right) \cong \mathbb{Z} \times\{1\} \cong \mathbb{Z}$
5. $\quad \Pi_{1}\left(T^{2}-p t,\left(x_{0}, y_{0}\right)\right) \cong \Pi_{1}\left(S^{1}, x_{0}\right) \times \Pi_{1}\left(S^{1}, x_{0}\right)$ [wedge of 2 circles] $\cong \mathbb{Z} * \mathbb{Z} \cong\langle a, b: a b \bar{a} \bar{b}\rangle$
6. $\quad\left[\right.$ Klein Bottle] $-\Pi_{1}\left(K B, x_{0}\right)=\langle a, b: b a \bar{b} a\rangle$

Proof: Sketch Proof - Suppose r is an sdr. Let $i: A \rightarrow X$ be the inclusion map. So $r \circ i=I_{A}$ and from prop 3.24.A.1 $r_{*} \circ i_{*}=\left(I_{A}\right)_{*}$. Since r is sdr $r \simeq I_{x}$ and from prop 3.24.B $i \circ$
$r \simeq i \circ I_{X}$ and $i_{*} \circ r_{*}=i_{*} \circ\left(I_{X}\right)_{*}$ so from 3.24.A. $2 r_{*}: \Pi\left(X, x_{0}\right) \rightarrow \Pi\left(A, x_{0}\right)$. Thus from prop 3.24.A r_{*} is a homomorphism because it is the identity map and thus $\Pi\left(X, x_{0}\right) \cong \Pi\left(A, x_{0}\right)$.

Fact - Group Theory - 2 groups with operations $\left(G,{ }_{G}\right)$ and $\left(H,{ }_{H}\right)$ can define a new group $G \times H$ as follows: Note, the elements of $G \times H$ are ordered pairs (g, h). Let $g_{1}, g_{2} \in G$ and $h_{1}, h_{2} \in H$ then to multiply two elements of $G \times H$:

$$
\left(g_{1}, h_{1}\right) \cdot\left(g_{2}, h_{2}\right)=\left(g_{1} \cdot{ }_{G} g_{2}, h_{1} \cdot{ }_{H} h_{2}\right)
$$

where $g_{1} \cdot{ }_{G} g_{2}$ is an element of G and $h_{1} \cdot{ }_{H} h_{2}$ is an element of H .

Theorem - Let $x_{0} \in X, y_{0} \in Y$. Then $\Pi_{1}\left(X \times Y,\left(x_{0}, y_{0}\right)\right) \cong \Pi_{1}\left(X, x_{0}\right) \times \Pi_{1}\left(Y, y_{0}\right)$.
Free Groups - Word Mult. - $a b \cdot a b=a b a b$. [Mult. reduced words, then cancel] This is an example of a free group rank $2\left[F_{2}\right]$ - element is made up of a and b. Presentation of $F_{2}=\langle a, b:\rangle$

Definition: Finite Presentation for a group G-is $\left\langle g_{1}, g_{2}, \ldots, g_{n}: R_{1}, R_{2}, \ldots, R_{n}\right\rangle\left[g_{i}\right.$'s are generators] so that

1. Every element of G is a finite product of g_{i} 's and their inverses.
2. Each relation R_{j} ia a word in the g_{i} 's and their inverses which gives the identity element in G.
3. If a reduced word in g_{i} 's in the identity element in G, then that reduced word is obtained by reducing some product of conjugates of the relations.
Conjugates - A conjugate of a word $w \in \mathrm{G}$ is $g w g^{-1}$, where g is an element on G.
Example - Conjugate of the relation $a b \bar{a} \bar{b}$ is

$$
(a \bar{b} \bar{a} b)(a b \bar{a} \bar{b})(\bar{b} a b \bar{a})
$$

Notice the center word contracts to the empty word and the outer words are inverses.

Theorem - Every finite group have a finite presentation.
Example $-G=\{e, a, b\}$ with e being the identity element, so, from definition of a group a and b must be inverses.
[make table with every generator on axis, perform multiplication to get interior words, (top generator • side generator)]
$G \cong\langle e, a, b: a b, b a, e e, a a \bar{b}$, etc \rangle. The 2 element words are one that become e [the identity element] on the table [these elements are inverses]. The three element words, the third element is the inverse of the first two multiplied together.

Definition - The free product of two finitely presented groups G and H is $\mathrm{G} * \mathrm{H}=$ igeneratiors for G, generators for H : relations for G, relation for H_{i}.

Definition: Abelian - A group is abelian if $a b=b a$ for all $a, b \in G$.

Definition: Disjoint Union - $A \sqcup B$ - If A and B both contain 2 then $A \sqcup B$ will contain 2_{A} and 2_{B}

Definition: Attaching a Disk to Y using F - $X=Y \sqcup D^{2} / \sim=Y \cup_{f} D^{2}$ - Like patching the whole in the space. Allows us to use group presentation for spaces like the torus and the klein bottle. Attaching a disk using f has the effect of killing the loop in Y represented by the boundary of the disk [makes it equivalent to the empty word - the identity]. We can imagine stretching the disk and manipulating it into the shape of a know loop in the space, "killing" that loop.

Example - Let $f: \partial D^{2} \rightarrow Y$ and let $Y=S^{1}$, then $X=S^{1} \sqcup D^{2}$.
We know $\Pi_{1}\left(Y, y_{0}\right) \cong \mathbb{Z} \cong\langle a:\rangle$ but
$\Pi_{1}(X, y) \cong\langle a: a\rangle[$ because f "kills" loop a] $\cong\{1\}$.

Definition: Closed Orientable Surfaces - Classification Theorem - Every closed,orientable surface is homeomorphic to a surface of genus g , for some non-negative integer g . $S_{g}=$ closed orientable surfce of Genus g (g is the number of holes on the surface: $S^{2}=S_{0}$ and $T^{2}=S_{1}$).
S_{2} is the two holed torus [becomes and octagon] and $\Pi_{1}\left(S_{2}, *\right) \cong\langle a, b, c, d: \bar{a} b a \bar{b} c \bar{d} \bar{c} d\rangle$.
S_{3} is the two holed torus $\Pi_{1}\left(S_{3}, *\right) \cong\langle a, b, c, d, e, f: a b \bar{a} \bar{b} c d \bar{c} \bar{d} e f \bar{e} \bar{f}\rangle$.
Closed - A topological space is closed if it has no boundary and has a finite diameter.

Definition: Knot Complement - Let k be a knot: $k=f(s)$. Then $X=S^{3}-k$ is the knot compliment of k .

Definition - Let $f: S^{1} \rightarrow S^{3}$ and let $k=f\left(s^{\prime}\right)$ be the knot then $\Pi_{1}(k, *) \equiv \Pi_{1}\left(S^{3}-k, *\right)$.
The fundamental group of the knot is $\Pi_{1}\left(S^{3}-f\left(s^{\prime}\right), *\right)$
Finding relations of a knot - Orient the overpass so it travels left to right and underpass goes down to up. Using right hand rule and imagination find the relations. Pattern - overpass $\left.c d o t(\text { top of underpass })^{-1}=(\text { bottom of underpass })^{(}-1\right) \cdot$ overpass.

Definition: Covering Space Projection $-p: E \rightarrow B$ is a covering space projection if E and B are both connected and for all $b \in B$ there exists a path connected neighborhood U of b such that every component of $p^{-1}(U)$ maps homeopathically (via p) onto U .
Neighborhood - A neighborhood of b is an open set containing b. Degree - The degree of a covering space is the number of pre-images of any point $b \in B$.

Definition: Universal Cover - A simply connected cover. Aka - A cover with the trivial fundamental group.

Known Universal covers

Infinite tree - universasla cover of the wedge of two circles.
\mathbb{R}^{1} - universal cover of S^{1}.
\mathbb{R}^{2} - universal cover of T^{2}.

Definition: Regarding Covering Spaces -

1. Homeo(X$)=\{h: X \rightarrow X: h$ is a homeomorphism $\}$
2. Let G be a group and X be topological space. We say that G acts on X if there exists a homomorphism

$$
\mathrm{T}: \mathrm{G} \rightarrow \operatorname{Homeo}(\mathrm{X})
$$

Intuitively, a group action ia a way to think of each group element as a homeomorphism from X to itself. $\mathrm{T}[\mathrm{Tau}]$ is a translation of E such that $T: E \rightarrow E$.
3. A group action is free if $u \neq 1 \Rightarrow T_{u}$ has no fixed points.
4. Let $T: G \rightarrow$ Homeo(X) be a group action. T is faithful if it is $1-1$.
5. H is a subset of G if $H \subseteq G$ and H and G are groups with some operation.

Definition: Construction of Quotient Spaces - Let H ; G, E a topological space, and $G=$ $\Pi(E, *)$. Define E / H, the quotient of E by H to be

$$
E / H=E / x \sim T_{h}(x) \text { for } x \in E, h \in H
$$

Definition: Unique Path Lifting Property - If $p: E \rightarrow B$ is a covering space projection and $\gamma:(I, 1,0) \rightarrow(B, b, c)$ is a path in B. Choose $\widetilde{b} \in p^{-1}(b)$.
Then there exists a unique path $\widetilde{\alpha}:(I, 0) \rightarrow(E, \widetilde{b})$ such that $p \circ \widetilde{\alpha}=\alpha$.
Proved uniqueness and existence. Idea behind existence [like Lemma] - need to use local homeomorophism. We can lift $\gamma /[0, t]$ where t is somewhere between 0 and 1 , hence between \widetilde{b} and \widetilde{c} and between b and c. We know at t there exists an open neighborhood surrounding is and in that neighborhood is a part of $\widetilde{\alpha}$ we didn't have before. By moving t to the part of $\widetilde{\alpha}$ on the boundary of the neighborhood [and doing this over and over again], we will move t closer to c along α, we will eventually get us to c. Making $p \circ \widetilde{\alpha}=\alpha$. See diagram on back page.

Definition: Facts about Quotient Spaces -

1. If $p: E \rightarrow B$ is a covering, then subgroups of $\Pi_{1}\left(B, b_{0}\right)$ yield unique covering spaces of B.
```
Unique Path Litting Propurty Diagram
```


2. If $p: E \rightarrow B$ is a covering then p gives rise to a unique subgroup of $\Pi_{1}\left(B, b_{0}\right)$.

Key Point - There is 1-1 correspondence between subgroups of $\Pi_{1}\left(B, b_{0}\right)$ and cover $p: E \rightarrow$ B (mod covering space equivalence).

Theorem : Let X is simply connected and locally path connected, $p: E \rightarrow B$ a covering, and $f: X \rightarrow B$ be continuous. Then there exists a continuous lift $\widetilde{f}: X \rightarrow E$ so that $p \circ \widetilde{f}=f$. Furthermore \widetilde{f} are in 1-1 correspondence with the primage of $f\left(x_{0}\right)$..

Main Idea to proof - Choose a fixed point $e_{0} \in p^{-1}\left(b_{0}\right)$ and define $\tilde{f}=e_{0}$. Let $y \in X$ and γ be a path from x to y . Lift γ to $\widetilde{\gamma}$ starting at e_{0}. Define $\widetilde{f}(y)=\widetilde{\gamma}(1)$. Key fact is that X is simply connected so it insures that had we chosen a different path from x to y , we would still end up with the same \tilde{f}.

Definition: Covering Transformation - Let $p: \widetilde{X} \rightarrow X$ be a covering, then the covering transformation ia a map $\gamma: \widetilde{X} \rightarrow \widetilde{X}$ so that there is a commutative diagram between $\widetilde{X}, \widetilde{X}$, and X.

