
LATEX Class Review by *

While starting from the beginning may be helpful, I feel it will be more helpful to me, since
I plan on using this as a study guide, to start a little further into the course (bypassing ideas
that we have learned in other classes like 1-1 and onto, and bypassing some basic ideas such as
what a topology is, the definition of an open set, continuity, etc.) focusing on what I feel are
the more complicated ideas and providing examples. Also, while defining complicated ideas, I
will treat them the way we did the definition quiz in class, defining all the key components that
have yet to be defined in these notes.

Definition: Basis - A basis β for a topology T on a space X is a set so that every set in T can
be obtained by taking arbitrary unions and finite intersections of elements of β.

Definition: Homeomorphic - Two spaces are homeomorphic if there exists a homeomorphism
between them.

Note: A homeomorphism is a bijection between points in X and points in Y and between
open sets in X and open sets in Y .

Definition: Homeomorphism - A homeomorphism between two spaces X and Y exists if there
exists a bijection f : X → Y such that f and f−1 are both continuous.

Definition: Bijection - f : X → Y is a bijection if it is one-to-one and onto.

Definition: Constant Map - C : X → Y is considered a constant map if there exists a c ∈ Y
such that for all x ∈ X, C(x) = c.

Note - A function f : X → Y is called constant if there is some c ∈ Y so that f(x) = c for
every x ∈ X.

Definition: Homotopic - Two maps f, g : X → Y are homotopic if there exists a map F :
X × I → Y such that for each x ∈ X,

F (x, 0) = f(x)

F (x, 1) = g(x).

We write f ' g or F is a homotopy between f and g.

Note: Homotopic paths must follow third and fourth properties, that

F (0, t) = x0

F (1, t) = x1.

If the paths are loops then x0 = x1. [Remember, the path/loop is the actual map, not the image.]
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Nulhomotopic - The function f : X → Y is nulhomotopic if it is homotopic to a constant
map.
Additional Thought: Two maps f, g : (X,A) → (Y,B) are homotopic rel A, written as
f ∼ g rel A, if there exists a homotopy F : X × I, A × I) → (Y,B) that follows the first two
criteria of a homotopy and if for all x ∈ A

F (x, t) = F (x, 0)

The idea is that during the homotopy the points in A do not move, they remain constant thought
out the homotopy.

Definition: Contractible - A space is called contractible if it is homotopic equivalent to a point

Lemma : Regarding Contractible Spaces [Proved in Class] - Let X be any space and
let p be any arbitrary point. If X = p then X ' p.

Definition: Homotopy Equivalent - Two spaces X and Y are homotopy equivalent if there
exists maps f : X → Y , and g : Y → X such that

g ◦ f ' IX

f ◦ g ' IY

[Where IX is the identity map IX : X → X by IX(x) = x and IY : Y → Y by IY (y) = y].

Example of Homotopy Equivalent: Prove the unit disk in R2 is contractible [Aka - homotopy
equivalent to a point].

Proof: - Let D = {(x, y) ∈ R2 : x2 + y2 ≤ 1} and p be some arbitrary point in R2. Define:

f : D → {p} by f(x, y) = p∀(x, y) ∈ D.

Further define:

g : {p} → D by g(p) = (0, 0).

Consider the function f ◦ g : {p} → {p} = f ◦ g(p) = p.
Notice that this is the same as I{p} : {p} → {p} by I{p}(p) = p.
From the lemma above, we know f ◦ g ' I{p}.
Now, consider g ◦ f : D → D, we know

g ◦ f(x, y) = g(f(x, y)) = g(p) = (0, 0).

Also, consider that ID(x, y) = (x, y).
Define: F : D × I → D by F ((x, y), t) = (x(1− t), y(1− t)). Note, this straight line homotopy
exists entirely in D due to our definition of D. Now,

F ((x, y), 0) = (x(1− 0), y(1− 0))

= (x, y)

= ID(x, y)
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F ((x, y), 1) = (x(1− 1), y(1− 1))

= (0, 0)

= g ◦ f(x, y)

Also, F is built on continuous polynomials so it too is continuous.
Thus ID ' g ◦ f . Therefore D is contractible [homotopy equivalent to a point] 2

Definition: Convex - Let C be an arbitrary space. C is convex if and only if for all x, y ∈ C,
the straight line segment connecting them is contained entirely in C. [C is convex iff for all
x, y ∈ C the set {tx+ (1− t)y : t ∈ [0, 1]} is a subset of C]

Definition: Homotopy classes of loops - Let α, β be loops with α(0) = β(0) then α ' β rel ∂I
if and only if there exists a map f : I × I → X such that

F (s, 0) = α(s)

F (s, 1) = β(s)

F (0 or , t) = α(0)

.

Homotopy Class of Loop α based at x0 ∈ X. -

[α] = {β : (I, ∂I)→ (X, x0)|α ' β rel ∂I}

Definition: Constant Loop - The constant loop C in space X based at x0 ∈ X is defined as

C : (I, ∂I)→ (X, x0) by C(s) = x0.

Definition: Group - a set [G] with an operation [*] that acts on the set ∗ : G × G → G with
the three properties: 1. identity 2. inverse 3. associative.

Definition: Identity - In set G, with operation ·, there exists e ∈ G such that for all g ∈ G,
e · g = g = g · e.

Definition: Inverse - In set G, with operation ·, for all g ∈ G, there exists h ∈ G, such that
g · h = e = h× g
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Definition: Associative - In set G, with operation ·, for all g, j, h ∈ G, (g · h) · j = g · (h · j).

Fundamental Group of X based at x0 ∈ X - π1(X, x0) is the set of all homotopy classes of all
loops based at x0, fully defined below. Let α, β : (I, ∂I)→ (X, x0) where α ·β : (I, ∂I)→ (X, x0)
by α · β(s) as defined below.

[Group] - π1(X, x0) = [α] : α : (I, ∂I)→ (X, x0)
[Operation] - [α] · [β] = [α · β] and

α · β(s) =

{
α(2s) for s ∈ [0, .5]
β(2s− 1) for s ∈ [.5, 1]

[Take note that we can only define multiplication of loops if they have the same base points.
Also, the idea behind α · β is that is spends the first 1/2 of the time mapping α and the second
1/2 of the time mapping β making one big continuous loop.]
Note: In class we proved that for all x ∈ X, π1(X, x0) is a group [aka-the fundamental group is
in fact a group]. Had to prove it satisfied the three properties to be a group, and the operation
had to be well-defined and continuous.

Definition: Well-defined - If [α1] = [α2] and [β1] = [β2] then

[α1 · β1] = [α2 · β2].

Prop 17.1 - Used to prove the fundamental group operation is continuous.
Let f : X → Y and X = A ∪B. If f rel A and f rel B are continuous, the f is continuous.

Definition: Homomorphic - Two groups with operations (G, ∗g) and (H, ∗h) are homomorphic
if there exists a function f : G→ H such that for all g1, g2 ∈ G

f(g1 ∗g g2) = f(g1) ∗h f(g2).
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Definition: Isomorphic - [G ∼= H] - Two groups with operations (G, ∗g) and (H, ∗h) are iso-
morphic if there exists a function f : G→ H that is a bijective homomorphism.

Fact: Any space X is simply connected if it is path connected and the fundamental group of
X is isomorphic to the trivial group. So, far all x0 ∈ X,

π1(X, x0) ∼= {1}.
Trivial Group - {1} - The trivial fundamental group, commonly denoted as {1}, is equal to
the constant loop.

π1(X, x0) = [α] : C : (I, ∂I)→ (X, x0)

.

Theorem - π1(S1, (1, 0)) ∼= Z

Lemma : Unique Path Lifting Lemma[Proved in Class] - Let α : (I, ∂I) → (S1, (1, 0))
and πR→ S1 by π(r) = (cos 2πr, sin 2πr) . There exists a unique path α̃ : I → R with α̃(0) = 0
and for all s ∈ I, π ◦ α̃(s) = α(s).

Here is the commutative diagram. [In the diagram w = π(r).]
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Figure 1: Lifting a loop from the circle to the real line.

Note: The Unique Path Lifting Lemma was used to prove π1(S1, (1, 0)) ∼= Z. To prove this
lemma we used the idea of local homeomorphism. Ideally we would like α̃ = π−1 ◦ α but π in
not invertible. However, it is invertible rel A, where A is an interval in R of length < 1. We
defined a u and v so that u = S1− (−1, 0) and v = S1− (1, 0), thus u and v are open sets where
u ∪ v = S1, and α−1(u) and α−1(v) are open sets and α−1(u) ∪ α−1(u) = I. This breaks I into
segments so that the interval α([ti, ti+1, ...]) ⊆ u or v. The function f : π1(S1, (1, 0))→ Z maps
loops to integers. It is a function which associates α with the number of times the image of α
wraps around S1.

Definition: Strong Defamation Retraction (sdr) - Let A ⊆ X and the function r : X → A be
a retraction. r is a sdr if Ix ' r rel A.
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There is a sdr if you can formulate(or picture) a function that smoothly moves all points in X
onto A. [Think homework]
Retraction of X onto A - A continuous function r : X → A with r/A = IA. Can be
understood as, r ◦ i = IA. The idea is that elements outside of A get moved onto A and elements
of A are fixed.

A
i−→ X

r ◦ i = IA ↘ ↓ r
A

Note: i : A→ A is called the inclusion map. For all a ∈ A, i(a) = a.

Corollary - D2 does not retract onto S1. Aka - There is no retraction r : D2 → S2. Proof
through contradiction or though commutative diagrams with fundamental groups.

Commutative Diagram Proof Idea - The problem lies in that Π1(D2, (1, 0)) ∼= {1}. The
identity map Ident∗ (diagnal line from Π1(S1, (1, 0)) to Π1(S1, (1, 0))) maps every Z to itself
while r∗ ◦ i∗ only maps to one element in the bottom Π1(S1, (1, 0)). Thus, Π1(S1, (1, 0)) 6=
Ident∗. This idea is based off Prop. 3.24.A which is discussed later.

Proof: Suppose r : D2 → S1 is a retraction. From the path lifting lemma proof we know

π1(S1, (1, 0)) ∼= Z. Let φ : π1(S1, (1, 0))→ Z.

The retraction r : D2 → S1 gives a map r/S1 : S1 → S1 which is the identity map.
Recall homework 5 problem 2, where we have α : (S1, (1, 0)) → (X, x0). Let the identity map
be this α. Now we have a map r : D2 → S1 such that r/∂D2 = α. Therefore there exists
α∗ : (I, ∂I)→ S1 with α∗ ' c rel ∂I. Thus,

φ([α∗]) = 1 because the image of α∗ wraps 1 time around S1.

φ([c]) = 0 because the image of c wraps 0 times around S1.

.
But α∗ ' c rel ∂I so [α∗] = [c], so this contradicts φ being well-defined. Therefore there cannot
be a retraction r : D2 → S1. 2
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Theorem : Brower Fixed Point Theorem - Every continuous f : D1 → D1 has a fixed
point. Use corollary above to prove.

Definition: Induced Homomorphism on Π1 - Suppose there is a function f : (X, x0)→ (Y, y0)
and suppose α : (I, ∂I) → (X, x0) is a loop in X. Then f ◦ α : (I, ∂I) → (Y, y0) is a loop in Y.
This gives a map f∗ : Π1(X, x0)→ Π1(Y, y0) by

f∗([α]) = [f ◦ α]

f∗ is call the induced map on Π1 and is a well-defined homomorphism, which will be proved now.

Proof: : f∗ from above is a well-defined homomorphism -
Well-Defined - Let f : (X, x0)→ (Y, y0) and let α : (I, ∂I)→ (X, x0) be a loop in X.
Assume there exists f∗ : Π1(X, x0)→ Π1(Y, y0) by f∗([α]) = [f ◦ α].
Prove that if α ' β rel ∂I then f ◦ α ' f ◦ β rel ∂I or, If [α] = [β] then f∗([α]) = f∗([β]).

Proof - Let α, β : (I, ∂I) → (X, x0) be loops in X. Let [α] = [β]. Finally, let f : (X, x0) →
(Y, y0). Then f ◦ α, f ◦ β : (I, ∂I)→ (Y, y0).
Assume α ' β rel ∂I so we know there exists a homotopy, say H(s, t) : (I × I, ∂I × I)→ (Y, y0)
such that

H(s, 0) = α(s)
H(s, 1) = β(s)
H(0, t) = x0

H(1, t) = x0.

Define another homotopy F (s, t) : (I × I, ∂I × I)→ (Y, y0) by F (s, t) = f ◦H(s, t). So,

F (s, 0) = f ◦H(s, 0) = f ◦ α(s)
F (s, 1) = f ◦H(s, 1) = f ◦ β(s)

F (0, t) = f ◦H(0, t) = f ◦ x0 = f(x0) = y0

F (1, t) = f ◦H(1, t) = f ◦ x0 = f(x0) = y0.

Notice that F is a composition of the continuous function f and the homotopy H, so it is clearly
continuous.
Thus, F is a homotopy from f ◦ α to f ◦ β rel ∂I.
So f ◦ α ' f ◦ β rel ∂I therefore [f ◦ α] = [f ◦ β] hence f∗([α]) = f∗([β]) which is what we need
to show f∗ is well-defined.
Proof of f∗ being a homomorphism. Aka - f∗([α]) ·ΠY

f∗([β]) = f∗([α] ·ΠX
[β]) for all

[α], [β] ∈ Π1(X, x0).
Let [α], [β] ∈ Π1(X, x0) then LHS

f∗([α]) · f∗([β]) = [f ◦ α] · [f ◦ β]

= [f ◦ α · f ◦ β]

where (f ◦ α · f ◦ β)(s) =

{
f ◦ α(2s) for s ∈ [0, 1/2]
f ◦ β(2s− 1) for s ∈ [1/2, 1]
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Next, RHS

f∗([α · β]) = f∗([α ◦ β]

= [f ◦ (α · β)]

where f ◦ α · β) = f(

{
α(2s) for s ∈ [0, 1/2]
β(2s− 1) for s ∈ [1/2, 1]

)

It is clear to see that LHS = RHS. Thus, f∗ is a homomorphism.
Now, we have proved that f∗ is a well-defined homomorphism. 2

Prop. 3.24.A - Fundamental Group Maps(Commutative Diagrams)
1. If there exists situation f : (X, x0) → (Y, y0) and g : (Y, y0) → (Z, z0) then (g ◦ f)∗ =

g∗ ◦ f∗.
2. If IX : (X, x0) → (X, x0) is the identity map the space X then (IX)∗ : Π1(X, x0) →

Π1(X, x0) is the identity map on the group Π1(X, x0).
Prop. 3.24.B - Fundamental Group Maps
If f ' g : (X, x0) → (Y, y0) rel x0 then f∗ = g∗ : Π1(X, x0) → Π1(Y, y0). Proved in class - Idea
is that we need to show f∗([α]) = g∗([α]) by f∗([α]) = [f ◦ α] = [g ◦ α] = g∗([α]). Middle steps
were proved in homework 7, problem 4.

Theorem - If f : (X, x0) → (Y, y0) is a homeomorphism the f∗ : Π(X, x0) → Π(Y, y0) is an
isomorphism. [Proved in class - idea - We’ve proved f∗ is a homeomorphism, just need to show
f∗ has an inverse]

Sketch proof - Claim g∗ is inverse of f∗. So g∗◦f∗ = (g◦f)∗[ from prop. 3.24.A.1 ] = (IX)∗[ because g =
f−1] = identity on Π1(X, x0)[ from prop 3.24.A.2 ] and f∗ ◦ g∗ = (f ◦ g)∗ = (IY )∗ = identity on
Π1(Y, y0). So, g∗ is the inverse of f∗ therefore f∗ is invertible and is thus 1 - 1 and onto.

Corollary to prop 3.24.B - If r : X → A is a strong deformation retraction [IX ' r] then
Π(X, x0) ∼= Π(A, x0). This corollary was used heavily on homework 9 to find the fundamental

groups of weird spaces by sdr-ing them to spaces we know the fundamental group of.
Spaces we know the fundamental group of and used in homework 9 are:
1. Π1(S1, x0) ∼= Z furthermore the wedge of two circles ∼= Z ∗ Z [* is the ”free product”]
2. Π1(S2, x0) ∼= {1} furthermore the wedge of two spheres ∼= {1} ∗ {1} ∼= {1} [* is the ”free
product”]
3. Π1(RP 2, y0) ∼= Π1(X, x0) ∼= Z2

4. [Annulus: S1 × I] - Π1(S1 × I, (x0.y0)) ∼= Π1(S1, x0)× Π1(I, y0) ∼= Z× {1} ∼= Z
5. Π1(T 2 − pt, (x0, y0)) ∼= Π1(S1, x0)× Π1(S1, x0) [wedge of 2 circles] ∼= Z ∗ Z ∼= 〈a, b : abab〉
6. [Klein Bottle] - Π1(KB, x0) = 〈a, b : baba〉

Proof: Sketch Proof - Suppose r is an sdr. Let i : A → X be the inclusion map. So
r ◦ i = IA and from prop 3.24.A.1 r∗ ◦ i∗ = (IA)∗. Since r is sdr r ' Ix and from prop 3.24.B i ◦
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r ' i ◦ IX and i∗ ◦ r∗ = i∗ ◦ (IX)∗ so from 3.24.A.2r∗ : Π(X, x0) → Π(A, x0). Thus from prop
3.24.A r∗ is a homomorphism because it is the identity map and thus Π(X, x0) ∼= Π(A, x0). 2

Fact - Group Theory - 2 groups with operations (G, ·G) and (H, ·H) can define a new group
G × H as follows: Note, the elements of G × H are ordered pairs (g, h). Let g1, g2 ∈ G and
h1, h2 ∈ H then to multiply two elements of G×H:

(g1, h1) · (g2, h2) = (g1 ·G g2, h1 ·H h2)

where g1 ·G g2 is an element of G and h1 ·H h2 is an element of H.

Theorem - Let x0 ∈ X, y0 ∈ Y . Then Π1(X × Y, (x0, y0)) ∼= Π1(X, x0)× Π1(Y, y0).

Free Groups - Word Mult. - ab · ab = abab. [Mult. reduced words, then cancel] This is an
example of a free group rank 2[F2] - element is made up of a and b. Presentation of F2 = 〈a, b :〉

Definition: Finite Presentation for a group G - is 〈g1, g2, ..., gn : R1, R2, ..., Rn〉 [gi’s are gener-
ators] so that
1. Every element of G is a finite product of gi’s and their inverses.
2. Each relation Rj ia a word in the gi’s and their inverses which gives the identity element
in G.
3. If a reduced word in gi’s in the identity element in G, then that reduced word is obtained
by reducing some product of conjugates of the relations.

Conjugates - A conjugate of a word w ∈ G is gwg−1, where g is an element on G.
Example - Conjugate of the relation abab is

(abab)(abab)(baba)

Notice the center word contracts to the empty word and the outer words are inverses.

Theorem - Every finite group have a finite presentation.
Example - G = {e, a, b} with e being the identity element, so, from definition of a group a

and b must be inverses.
[make table with every generator on axis, perform multiplication to get interior words, (top

generator · side generator)]
G ∼= 〈e, a, b : ab, ba, ee, aab, etc〉. The 2 element words are one that become e [the identity

element] on the table [these elements are inverses]. The three element words, the third element
is the inverse of the first two multiplied together.

Definition - The free product of two finitely presented groups G and H is G * H = ¡generatiors
for G, generators for H: relations for G, relation for H¿.

Definition: Abelian - A group is abelian if ab = ba for all a, b ∈ G.
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Definition: Disjoint Union - AtB - If A and B both contain 2 then AtB will contain 2A and
2B

Definition: Attaching a Disk to Y using F - X = Y tD2/ ∼= Y ∪fD
2 - Like patching the whole

in the space. Allows us to use group presentation for spaces like the torus and the klein bottle.
Attaching a disk using f has the effect of killing the loop in Y represented by the boundary of
the disk [makes it equivalent to the empty word - the identity]. We can imagine stretching the
disk and manipulating it into the shape of a know loop in the space, ”killing” that loop.

Example - Let f : ∂D2 → Y and let Y = S1, then X = S1 tD2.
We know Π1(Y, y0) ∼= Z ∼= 〈a :〉 but
Π1(X, y)) ∼= 〈a : a〉 [because f ”kills” loop a] ∼= {1}.

Definition: Closed Orientable Surfaces - Classification Theorem - Every closed,orientable sur-
face is homeomorphic to a surface of genus g, for some non-negative integer g. Sg = closed
orientable surfce of Genus g (g is the number of holes on the surface: S2 = S0 and T 2 = S1).

S2 is the two holed torus [becomes and octagon] and Π1(S2, ∗) ∼= 〈a, b, c, d : ababcdcd〉.
S3 is the two holed torus Π1(S3, ∗) ∼= 〈a, b, c, d, e, f : ababcdcdefef〉.
Closed - A topological space is closed if it has no boundary and has a finite diameter.

Definition: Knot Complement - Let k be a knot: k = f(s). Then X = S3 − k is the knot
compliment of k.

Definition - Let f : S1 → S3 and let k = f(s′) be the knot then Π1(k, ∗) ≡ Π1(S3 − k, ∗).
The fundamental group of the knot is Π1(S3 − f(s′), ∗)
Finding relations of a knot - Orient the overpass so it travels left to right and underpass
goes down to up. Using right hand rule and imagination find the relations. Pattern - overpass
cdot (top of underpass)−1 = (bottom of underpass)( − 1) · overpass.

Definition: Covering Space Projection - p : E → B is a covering space projection if E and B
are both connected and for all b ∈ B there exists a path connected neighborhood U of b such
that every component of p−1(U) maps homeopathically (via p) onto U.

Neighborhood - A neighborhood of b is an open set containing b. Degree - The degree of a
covering space is the number of pre-images of any point b ∈ B.

Definition: Universal Cover - A simply connected cover. Aka - A cover with the trivial funda-
mental group.

Known Universal covers
Infinite tree - universasla cover of the wedge of two circles.
R1 - universal cover of S1.
R2 - universal cover of T 2.

10



Definition: Regarding Covering Spaces -
1. Homeo(X) = {h : X → X : h is a homeomorphism }
2. Let G be a group and X be topological space. We say that G acts on X if there exists a
homomorphism

T: G→ Homeo(X)

Intuitively, a group action ia a way to think of each group element as a homeomorphism from
X to itself. T [Tau] is a translation of E such that T : E → E.
3. A group action is free if u 6= 1⇒ Tu has no fixed points.
4. Let T : G→ Homeo(X) be a group action. T is faithful if it is 1 - 1.
5. H is a subset of G if H ⊆ G and H and G are groups with some operation.

Definition: Construction of Quotient Spaces - Let H ¡ G, E a topological space, and G =
Π(E, ∗). Define E/H, the quotient of E by H to be

E/H = E/x ∼ Th(x) for x ∈ E, h ∈ H

Definition: Unique Path Lifting Property - If p : E → B is a covering space projection and
γ : (I, 1, 0)→ (B, b, c) is a path in B. Choose b̃ ∈ p−1(b).

Then there exists a unique path α̃ : (I, 0)→ (E, b̃) such that p ◦ α̃ = α.

Proved uniqueness and existence. Idea behind existence [like Lemma] - need to use local home-

omorophism. We can lift γ/[0,t] where t is somewhere between 0 and 1, hence between b̃ and c̃
and between b and c. We know at t there exists an open neighborhood surrounding is and in
that neighborhood is a part of α̃ we didn’t have before. By moving t to the part of α̃ on the
boundary of the neighborhood [and doing this over and over again], we will move t closer to c
along α, we will eventually get us to c. Making p ◦ α̃ = α. See diagram on back page.

Definition: Facts about Quotient Spaces -
1. If p : E → B is a covering, then subgroups of Π1(B, b0) yield unique covering spaces of B.
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2. If p : E → B is a covering then p gives rise to a unique subgroup of Π1(B, b0).
Key Point - There is 1 - 1 correspondence between subgroups of Π1(B, b0) and cover p : E →
B(mod covering space equivalence).

Theorem : Let X is simply connected and locally path connected, p : E → B a covering, and
f : X → B be continuous. Then there exists a continuous lift f̃ : X → E so that p ◦ f̃ = f .
Furthermore f̃ are in 1 - 1 correspondence with the primage of f(x0)..

Main Idea to proof - Choose a fixed point e0 ∈ p−1(b0) and define f̃ = e0. Let y ∈ X and

γ be a path from x to y. Lift γ to γ̃ starting at e0. Define f̃(y) = γ̃(1). Key fact is that X is
simply connected so it insures that had we chosen a different path from x to y, we would still
end up with the same f̃ .

Definition: Covering Transformation - Let p : X̃ → X be a covering, then the covering
transformation ia a map γ : X̃ → X̃ so that there is a commutative diagram between X̃, X̃, and
X.
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