IXTEX Class Review by *

While starting from the beginning may be helpful, I feel it will be more helpful to me, since
I plan on using this as a study guide, to start a little further into the course (bypassing ideas
that we have learned in other classes like 1-1 and onto, and bypassing some basic ideas such as
what a topology is, the definition of an open set, continuity, etc.) focusing on what I feel are
the more complicated ideas and providing examples. Also, while defining complicated ideas, I
will treat them the way we did the definition quiz in class, defining all the key components that
have yet to be defined in these notes.

Definition: Basis - A basis  for a topology T on a space X is a set so that every set in T" can
be obtained by taking arbitrary unions and finite intersections of elements of [.

Definition: Homeomorphic - T'wo spaces are homeomorphic if there exists a homeomorphism
between them.

Note: A homeomorphism is a bijection between points in X and points in Y and between
open sets in X and open sets in Y.

Definition: Homeomorphism - A homeomorphism between two spaces X and Y exists if there
exists a bijection f : X — Y such that f and f~1 are both continuous.

Definition: Bijection - f: X — Y is a bijection if it is one-to-one and onto.

Definition: Constant Map - C' : X — Y is considered a constant map if there exists a ¢ € Y
such that for all z € X, C(z) = c.

Note - A function f: X — Y is called constant if there is some ¢ € Y so that f(z) = ¢ for
every r € X.

Definition: Homotopic - Two maps f,g : X — Y are homotopic if there exists a map F :
X x I — Y such that for each z € X,

F(x,0) = f(x)

F(z,1) = g(x).
We write f ~ g or F is a homotopy between f and g.
Note: Homotopic paths must follow third and fourth properties, that

F(O,t) = T
F(l,t) = X.

If the paths are loops then zy = x;. [Remember, the path/loop is the actual map, not the image. |
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Nulhomotopic - The function f : X — Y is nulhomotopic if it is homotopic to a constant
map.
Additional Thought: Two maps f,g : (X,A) — (Y, B) are homotopic rel A, written as
f ~ grel A, if there exists a homotopy F': X x I, A x I) — (Y, B) that follows the first two
criteria of a homotopy and if for all x € A

F(z,t) = F(x,0)

The idea is that during the homotopy the points in A do not move, they remain constant thought
out the homotopy.

Definition: Contractible - A space is called contractible if it is homotopic equivalent to a point

Lemma : Regarding Contractible Spaces [Proved in Class] - Let X be any space and
let p be any arbitrary point. If X = p then X ~ p.

Definition: Homotopy Equivalent - Two spaces X and Y are homotopy equivalent if there
exists maps f: X — Y, and g: Y — X such that

gof~Ix

fog=Iy
[Where Ix is the identity map Ix : X — X by Ix(z) =z and Iy : Y — Y by Iy(y) = y].

Example of Homotopy Equivalent: Prove the unit disk in R? is contractible [Aka - homotopy
equivalent to a point].

Proof: - Let D = {(x,y) € R?: 2> + y*> < 1} and p be some arbitrary point in R?. Define:

f:D —{p} by f(z,y) =p¥(z,y) € D.
Further define:

g9 :{p} — D by g(p) = (0,0).

Consider the function fog: {p} — {p} = fog(p) =p.

Notice that this is the same as I,y : {p} — {p} by I1p}(») = p.
From the lemma above, we know f o g~ Iy,.

Now, consider go f : D — D, we know

go flz,y) =g(f(z,y)) = gp) = (0,0).

Also, consider that Ip(z,y) = (z,y).
Define: F': D x I — D by F((z,y),t) = (x(1 —1t),y(1 —t)). Note, this straight line homotopy
exists entirely in D due to our definition of D. Now,

F(<:U7y)70) = (:K(l—()),y(l—()))

= (z,y)
= ]D(xay)



F((z,y),1) = (2(1=1),y(1=1))
— (0,0)

= go f(z,y)

Also, F is built on continuous polynomials so it too is continuous.
Thus Ip ~ g o f. Therefore D is contractible [homotopy equivalent to a point] O

Definition: Convex - Let C' be an arbitrary space. C'is convex if and only if for all z,y € C,
the straight line segment connecting them is contained entirely in C. [C is convex iff for all
x,y € C the set {tx + (1 —t)y : t € [0,1]} is a subset of C]

Definition: Homotopy classes of loops - Let «, 3 be loops with «(0) = 5(0) then o ~ 3 rel I
if and only if there exists a map f : I x I — X such that

F(s,0) = a(s)

F(s,1) = f(s)
F(0or ,t) = a(0)

Homotopy Class of Loop o based at z5 € X. -

[a] ={0: (I,0I) — (X, zo)|a ~ [ rel O}

Definition: Constant Loop - The constant loop C' in space X based at zy € X is defined as
C:(I,0I) — (X, z9) by C(s) = xo.

Definition: Group - a set [G] with an operation [*] that acts on the set * : G x G — G with
the three properties: 1. identity 2. inverse 3. associative.

Definition: Identity - In set G, with operation -, there exists e € G such that for all g € G,
e-g=g=g-e.

Definition: Inverse - In set G, with operation -, for all ¢ € G, there exists h € G, such that
g-h=e=hxg



Definition: Associative - In set G, with operation -, for all g,j,h € G, (9-h)-j =g (h- 7).

Fundamental Group of X based at zo € X - 7 (X, z9) is the set of all homotopy classes of all
loops based at zg, fully defined below. Let a, 8 : (I,01) — (X, z) where a-3 : (I,01) — (X, z9)
by a - 3(s) as defined below.

[Group] - m (X, z9) = o a1 (L,0]) — (X, x0)

[Operation] - [a] - [5] = [« - 5] and

a(2s) for s € [0, .5]
a-f(s) = { B(2s —1) for s € [.5,1]

_J'—::'V\o\?inq_ cdotted line
lici~sy oNn X and B, Hois
e PBs one Dig loop.

s

[Take note that we can only define multiplication of loops if they have the same base points.
Also, the idea behind « - 3 is that is spends the first 1/2 of the time mapping « and the second
1/2 of the time mapping [ making one big continuous loop.]

Note: In class we proved that for all z € X, m (X, xg) is a group [aka-the fundamental group is
in fact a group|. Had to prove it satisfied the three properties to be a group, and the operation
had to be well-defined and continuous.

Definition: Well-defined - If [ay] = [ae] and [51] = [52] then
[ - Bi] = [z - Ba].

Prop 17.1 - Used to prove the fundamental group operation is continuous.
Let f: X =Y and X = AUB. If f rel A and f rel B are continuous, the f is continuous.

Definition: Homomorphic - Two groups with operations (G, *,) and (H, *;) are homomorphic
if there exists a function f : G — H such that for all g1, 9, € G

f(91%¢ 92) = f(g1) *n f(g2)



Definition: Isomorphic - [G = H] - Two groups with operations (G, *g) and (H,xh) are iso-
morphic if there exists a function f : G — H that is a bijective homomorphism.

Fact: Any space X is simply connected if it is path connected and the fundamental group of
X is isomorphic to the trivial group. So, far all zy € X,

m (X, zo) = {1}.

Trivial Group - {1} - The trivial fundamental group, commonly denoted as {1}, is equal to
the constant loop.
m(X,z0) =[a] : C: (I,01) — (X, x0)

Theorem - m(51,(1,0)) = Z

Lemma : Unique Path Lifting Lemma[Proved in Class] - Let o : (1,0I) — (S1,(1,0)
and TR — Sy by m(r) = (cos 27r, sin 27r) . There exists a unique path a : [ — R with a(0) =
and for all s € I, mo a(s) = a(s).

Here is the commutative diagram. [In the diagram w = m(r).]

)
0

Figure 1: Lifting a loop from the circle to the real line.

Note: The Unique Path Lifting Lemma was used to prove m(S1, (1,0)) = Z. To prove this
lemma we used the idea of local homeomorphism. Ideally we would like @ = 77! o o but 7 in
not invertible. However, it is invertible rel A, where A is an interval in R of length < 1. We
defined a u and v so that u = S* — (=1,0) and v = S' — (1, 0), thus v and v are open sets where
wUv = S' and a~(u) and a~!(v) are open sets and o' (u) U a~!(u) = I. This breaks I into
segments so that the interval a([t;, t;11,...]) C u or v. The function f : m(S51,(1,0)) — Z maps
loops to integers. It is a function which associates a with the number of times the image of «
wraps around S?.

Definition: Strong Defamation Retraction (sdr) - Let A C X and the function r : X — A be
a retraction. r is a sdr if I, ~ r rel A.



There is a sdr if you can formulate(or picture) a function that smoothly moves all points in X
onto A. [Think homework]

Retraction of X onto A - A continuous function r : X — A with r/A = I4. Can be
understood as, roi = 4. The idea is that elements outside of A get moved onto A and elements

of A are fixed.

A L X
roi=1I4 \, |1
A

Note: i: A — A is called the inclusion map. For all a € A, i(a) = a.

Corollary - D? does not retract onto S'. Aka - There is no retraction r : D* — S?. Proof
through contradiction or though commutative diagrams with fundamental groups.
Commutative Diagram Proof Idea - The problem lies in that II;(D? (1,0)) = {1}. The
identity map Ident, (diagnal line from II;(S%, (1,0)) to II;(S*, (1,0))) maps every Z to itself
while r, o 7, only maps to one element in the bottom II;(S*, (1,0)). Thus, IT;(S', (1,0)) #
Ident,. This idea is based off Prop. 3.24.A which is discussed later.

Proof: Suppose r : D? — S is a retraction. From the path lifting lemma proof we know

71 (S (1,0)) 2 Z. Let ¢ : m(S*, (1,0)) — Z.

D".CACZ‘)KOM )Kf ‘D’z — S s o (Qf’rqgf‘io.’;\)

The retraction r : D* — S! gives a map r/g1 : S' — S which is the identity map.

Recall homework 5 problem 2, where we have « : (S, (1,0)) — (X, z0). Let the identity map
be this a. Now we have a map r : D* — S! such that r/5p: = a. Therefore there exists
a* : (I,0I) — S with a* ~ ¢ rel dI. Thus,

#([a*]) = 1 because the image of a* wraps 1 time around S*.

#([c]) = 0 because the image of ¢ wraps 0 times around S'.

But o* ~ ¢ rel 0I so [o*] =[], so this contradicts ¢ being well-defined. Therefore there cannot
be a retraction r : D* — S*. 0



Theorem : Brower Fixed Point Theorem - Every continuous f : D' — D! has a fixed
point. Use corollary above to prove.

Definition: Induced Homomorphism on II; - Suppose there is a function f : (X, xq) — (Y, 40)
and suppose « : (I,0I) — (X, ) is a loop in X. Then foa : (1,01) — (Y,yy) is a loop in Y.
This gives a map f. : I1;(X, z9) — (Y, yo) by

folla]) = [f o a]

f« is call the induced map on II; and is a well-defined homomorphism, which will be proved now.

Proof: : f, from above is a well-defined homomorphism -

Well-Defined - Let f: (X, 29) — (Y, yo) and let a : (I,01) — (X, ) be a loop in X.

Assume there exists f, : II1 (X, z0) — 1 (Y, y0) by fi([a]) = [f o a.

Prove that if o ~ 8 rel 9 then foa ~ fo B rel I or, If [a] =[] then f.([a]) = f.([5]).
Proof - Let o, : (I,0I) — (X, x0) be loops in X. Let [a] = [#]. Finally, let f : (X, z9) —
(Y,90). Then foa, foB:(I,0I) = (Y,y).

Assume a ~ (3 rel 91 so we know there exists a homotopy, say H(s,t) : (I x I,0I xI) — (Y, o)
such that

H(s,0) = a(s)
H(s.1) = (s)
H(O, t) = To
H(l, t) = X

F(s,0) ) = foa(s)
F(Sal): 5, ):foﬂ(s)
F(Ovt):foH(O’t):fo:EO:f(xO):yO
F(lat):foH(lvt):foxOZf(xO):yO-

Notice that F is a composition of the continuous function f and the homotopy H, so it is clearly
continuous.

Thus, F' is a homotopy from foa to fo [ rel OI.

So foa =~ fofrel OI therefore [f oa] = [f o] hence f.([a]) = f.([5]) which is what we need
to show f, is well-defined.

Proof of f, being a homomorphism. Aka - f.([o]) ‘o, f«([0]) = fe([a] ‘ny [F]) for all
o], [6] € T (X, )

Let [a], [5] € I11(X, 2o) then LHS

follo) - £(18)) = [foal-[foh]
= [foa-fof)

foa(2s) for s € 10,1/2]
where (foa- fofB)(s) = { fopB(2s—1) forse[1/2,1]



Next, RHS

f*([a ) ﬁ]) = f*<[Oé Oﬁ]

o(2s) for s € [0,1/2]
where foa - f3) :f<{ B(2s —1) for s e [1/2,1] )

It is clear to see that LHS = RHS. Thus, f, is a homomorphism.
Now, we have proved that f, is a well-defined homomorphism. O

Prop. 3.24.A - Fundamental Group Maps(Commutative Diagrams)

1. If there exists situation f : (X, z9) — (Y,yo) and g : (Y,y0) — (Z, 20) then (go f), =
Gs © [

2. If Ix : (X,20) — (X, z0) is the identity map the space X then (Ix). : II;(X, z9) —
I1; (X, z¢) is the identity map on the group IT; (X, zy).
Prop. 3.24.B - Fundamental Group Maps
If f~g:(X,z9) = (Y,y0) rel xg then f, = g, : II1(X,x0) — II1(Y,y0). Proved in class - Idea
is that we need to show f.([a]) = g.([a]) by fu([a]) = [f o] = [g o a] = g.([a]). Middle steps
were proved in homework 7, problem 4.

Theorem - If f: (X,z9) — (Y,yo) is a homeomorphism the f, : TI(X,z¢) — II(Y,y) is an
isomorphism. [Proved in class - idea - We’ve proved f, is a homeomorphism, just need to show
f+ has an inverse]

Sketch proof - Claim g, is inverse of f,. So g.of. = (gof).[ from prop. 3.24.A.1 | = (Ix).[ because g =
/7Y = identity on II; (X, zo)[ from prop 3.24.A.2 | and f, 0 g, = (f 0 g)« = (Iy). = identity on
I (Y, yo). So, g. is the inverse of f, therefore f, is invertible and is thus 1 - 1 and onto.

Corollary to prop 3.24.B - If r : X — A is a strong deformation retraction [Ix =~ r| then

[

II(X, z) = [I(A, zp). This corollary was used heavily on homework 9 to find the fundamental

groups of weird spaces by sdr-ing them to spaces we know the fundamental group of.

Spaces we know the fundamental group of and used in homework 9 are:

1. I, (S, z0) & Z furthermore the wedge of two circles 2 Z % Z [* is the "free product”]

2. I1,(S?% x¢) = {1} furthermore the wedge of two spheres = {1} * {1} = {1} [* is the "free
product”]

3. Hl(RP2, y()) = Hl(X, 1‘0) = ZQ

4. [Annulus: S x I] - T (S x I, (w.y0)) T (SY, wo) x Ty (L,y0) XZ x {1} X Z

5. (T2 — pt, (zo,90)) = (S, 20) x (S, 2) [wedge of 2 circles] = Z * Z = {a, b : abab)
6.

[Klein Bottle] - IT; (K B, zq) = {(a, b : baba)

Proof: Sketch Proof - Suppose r is an sdr. Let i : A — X be the inclusion map. So
roi= I and from prop 3.24.A.1 r, 04, = (I4)«. Since r is sdr r ~ [, and from prop 3.24.B io



r~iolyx andi,or, =i, 0 (Ix).so from 3.24.A.2r, : II(X, z9) — II(A,xp). Thus from prop
3.24.A r, is a homomorphism because it is the identity map and thus I1(X, zg) 2 II(A, zq). O

Fact - Group Theory - 2 groups with operations (G, -¢) and (H,-g) can define a new group
G x H as follows: Note, the elements of G x H are ordered pairs (g,h). Let g1,9, € G and
hi,ho € H then to multiply two elements of G x H:

(91, 1) - (92, h2) = (91 -c 92, "1 -1 Do)

where ¢; ‘¢ g2 is an element of G and hy -z hs is an element of H.

Theorem - Let 2y € X,yo € Y. Then II;(X XY, (zo,v0)) = I1(X, z0) x II1(Y, yo).

Free Groups - Word Mult. - ab-ab = abab. [Mult. reduced words, then cancel] This is an
example of a free group rank 2[F5] - element is made up of a and b. Presentation of Fy = (a,b :)

Definition: Finite Presentation for a group G - is (g1, g2, ..., gn : R1, Ra, ..., Ry,) [g:’s are gener-
ators| so that

1.  Every element of G is a finite product of g;’s and their inverses.

2. Each relation R; ia a word in the g;’s and their inverses which gives the identity element
in G.

3. If a reduced word in g;’s in the identity element in G, then that reduced word is obtained
by reducing some product of conjugates of the relations.

Conjugates - A conjugate of a word w € G is gwg~!, where g is an element on G.
Example - Conjugate of the relation abab is

(abab)(abab)(baba)

Notice the center word contracts to the empty word and the outer words are inverses.

Theorem - Every finite group have a finite presentation.

Example - G = {e,a,b} with e being the identity element, so, from definition of a group a
and b must be inverses.

[make table with every generator on axis, perform multiplication to get interior words, (top
generator - side generator)]

G = (e,a,b : ab,ba,ee,aab,etc). The 2 element words are one that become e [the identity
element] on the table [these elements are inverses|. The three element words, the third element
is the inverse of the first two multiplied together.

Definition - The free product of two finitely presented groups G and H is G * H = jgeneratiors
for G, generators for H: relations for G, relation for H,.

Definition: Abelian - A group is abelian if ab = ba for all a,b € G.
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Definition: Disjoint Union - AU B - If A and B both contain 2 then ALl B will contain 24 and
2B

Definition: Attaching a Disk to Y using F - X = Y UD?/ ~= Y U; D? - Like patching the whole
in the space. Allows us to use group presentation for spaces like the torus and the klein bottle.
Attaching a disk using f has the effect of killing the loop in Y represented by the boundary of
the disk [makes it equivalent to the empty word - the identity]. We can imagine stretching the
disk and manipulating it into the shape of a know loop in the space, ”killing” that loop.

Example - Let f: 9D?* — Y and let Y = S!, then X = S' U D%

We know I (Y, y9) = Z = (a :) but

I1,(X,y)) = (a: a) [because f "kills” loop a] = {1}.

Definition: Closed Orientable Surfaces - Classification Theorem - Every closed,orientable sur-
face is homeomorphic to a surface of genus g, for some non-negative integer g. S, = closed
orientable surfce of Genus g (g is the number of holes on the surface: S* = Sy and T? = S).

Sy is the two holed torus [becomes and octagon| and I1;(Ss, *) = (a, b, ¢, d : ababcded).
S3 is the two holed torus I1;(Ss, %) = (a,b,c,d, e, f : ababcdede fef).
Closed - A topological space is closed if it has no boundary and has a finite diameter.

Definition: Knot Complement - Let k be a knot: & = f(s). Then X = S® — k is the knot
compliment of k.

Definition - Let f: S' — 5% and let k = f(s) be the knot then IT;(k, *) = I1;(S® — k, *).
The fundamental group of the knot is I1;(S® — f(s'), x)

Finding relations of a knot - Orient the overpass so it travels left to right and underpass
goes down to up. Using right hand rule and imagination find the relations. Pattern - overpass
cdot (top of underpass)™' = (bottom of underpass)! — 1) - overpass.

Definition: Covering Space Projection - p : E — B is a covering space projection if E and B
are both connected and for all b € B there exists a path connected neighborhood U of b such
that every component of p~*(U) maps homeopathically (via p) onto U.

Neighborhood - A neighborhood of b is an open set containing b. Degree - The degree of a
covering space is the number of pre-images of any point b € B.

Definition: Universal Cover - A simply connected cover. Aka - A cover with the trivial funda-
mental group.

Known Universal covers

Infinite tree - universasla cover of the wedge of two circles.
R! - universal cover of S*.

R? - universal cover of T2.
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Definition: Regarding Covering Spaces -

1.  Homeo(X) ={h: X — X : his a homeomorphism }

2. Let G be a group and X be topological space. We say that G acts on X if there exists a
homomorphism

T: G— Homeo(X)

Intuitively, a group action ia a way to think of each group element as a homeomorphism from
X to itself. T [Tau] is a translation of E such that T': £ — E.

3. A group action is free if u # 1 = T, has no fixed points.

4. Let T': G — Homeo(X) be a group action. T is faithful if it is 1 - 1.

5. His asubset of Gif H C G and H and G are groups with some operation.

Definition: Construction of Quotient Spaces - Let H | G, E a topological space, and G =
II(E, *). Define E/H, the quotient of E by H to be

E/H=FE/x ~Ty(x) forx € E.he H

Definition: Unique Path Lifting Property - If p : E — B is a covering space projection and
v:(I,1,0) — (B,b,c) is a path in B. Choose b € p~1(b).

Then there exists a unique path & : (I,0) — (E,b) such that po a = a.

Proved uniqueness and existence. Idea behind existence [like Lemma] - need to use local home-
omorophism. We can lift /[ where ¢ is somewhere between 0 and 1, hence between band @
and between b and c. We know at ¢ there exists an open neighborhood surrounding is and in
that neighborhood is a part of @ we didn’t have before. By moving ¢ to the part of a on the
boundary of the neighborhood [and doing this over and over again], we will move ¢ closer to ¢
along «, we will eventually get us to c. Making p o a = a. See diagram on back page.

Definition: Facts about Quotient Spaces -
1. Ifp: E — B is a covering, then subgroups of II; (B, by) yield unique covering spaces of B.
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2. Ifp: E — Bis a covering then p gives rise to a unique subgroup of I1; (B, by).
Key Point - There is 1 - 1 correspondence between subgroups of I1;(B, by) and cover p : E —
B(mod covering space equivalence).

Theorem : Let X is simply connected and locally path connected, p : E — B a covering, and
f + X — B be continuous. Then there exists a continuous lift f : X — FE so that po f = f.
Furthermore f are in 1 - 1 correspondence with the primage of f(x)..

Main Idea to proof - Choose a fixed point ey € p~(by) and define f: eo. Let y € X and
v be a path from x to y. Lift v to 7 starting at e;. Define f(y) = 7(1). Key fact is that X is

simply connected so it insures that had we chosen a different path from x to y, we would still
end up with the same f.

Definition: Covering Transformation - Let p : X - X bea covering, then the covering
transformation ia a map v : X — X so that there is a commutative diagram between X, X, and
X.
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