Intro

\_’T S /

Taking the Wursts for a Turn:

Algebra, Topology and Dachshunds
Richard P Kubelka

He was out walking his two dachshunds Sascha and Fritz one day and
he began to become entangled in their leashes as they moved around.
He kept having to switch the leashes from hand to hand, step over the
leashes, or completely untangle the leashes constantly.

He was fed up with having to do this so he began to think of his
problematic situation in terms of topology to determine whether he
could untangle himself from the leashes without stepping over them
or changing hands—> moves that he says are “cheating’.

Eventually he found that there were certain moves he could do which
would untangle the leashes without him having to cheat. The led him
on a topological mind train of which is the source of the paper. |

- DEMONSTRATION OF WALKING TWO DOGS

Now, he determined that of all the possible things the dogs could do, it
seemed to appear that there were only a certain “number” of ‘dog
moves’ and a certain number of ‘walker moves’
= Dog Moves
e Show multiples examples of how the leashes could be
tangled on the board {(dog moves) C— —

»  Walker Moves
e Show multiple examples of how the walker can unravel
the leashes via the walker subgroup on the board(the
subgroup of D2 that he can resolve by his actions)
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» Said that this problem of trying to ‘unravel’ the leashes
reminded him of Artins Braid Groups.
 The nice thing about artins braid groups was that this
would allow him to solve the problem of whether or not
he had thought up all possible dog moves. |
e This will be explained later on, but the basic idea is that
this problem of tangling leashes can be thought of as
braids with three string—=> where one is Dog 1 one is the
walker (in the middle) and one is Dog 2.
= Briefly explain this M‘?Wm oy
 Ordinary braids can be factored into a product of
simpler braids. This is what he wanted to do with the
dog leashes. He wanted to see if he could ‘factor’ the
| tangled leashes into a product of simpler dog moves.
o What he hopes to achieve
 To show that he could resolve almost every tangle the
dogs could weave by a set of walker moves (a subgroup
of D2)
o Show D3 has ‘a presentation with two generators
and one relation
* The 2-Dog Group D~
= Includes all possible entanglements of the dogs and their
leashes around themselves and him
 Describe and show the 2 basic moves Rand T and
MIrrors
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=  The Walker Subgroup W[ﬁwbﬁfﬁ’wﬁ? w//() 2,7 A e Coul pe)/he L5
* (Consists of all the moves that the walker can make '

o ~Thetefthe yw-whattheright hand
Js.doing-
e Describe and show the two basic moves rho, lambda
and y




= He needs an operator on the group
* Describes this as concatenation (Figure 3)
o Show different moves such as T?R

) =

» Relation on D4
o p=T4R
» Thisis the only relation.
=  Demonstrate
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* Role of Braid Groups
o To ensure that no generators or relations were left out

o Relates tangled leashes to braids in B3
» B3 isthe group that describes the ‘hair’ braids that can be

made with three strings. |
= “The basic idea of By is to put a group structure on the set of all

n stranded hair braids.”
o Explain sigma 1 and sigma 2 and the unbraid (| | | )

o
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e [n General, The Braid Group on n string, By, is generated by elements

Sigma 1, sigma 2,..... sigma (n-1)
Subject to the following relations:

Sigma1i sigma) = sigma j sigma 1

Sigmai sigma i+1 sigma 1= sigma i+1 sigma 1 sigma i+1
All he cares about is Bz (Dog, Walker and Dog}
This is subject to the relation
Sigma 1 sigma 2 sigma 1 = sigma 2 sigma 1 sigma 2

Shown on next page
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/%) NOTICE THAT MIDDLE STRING STAYS FIXED
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* Theorem 2: The 2-Dog group is just Bz(4) 7~
o Bswhere the second string (walker) stays fixed (b/c any move that is
made by the dogs must keep you in the middle
o Give simple setup of the proof (shown on the handout on next page)
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Theorem 2. The 2-Dog Group, Dg, deﬁned mtuztwely in Section 1 above, is just |
(2) ~” - .
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~..Remark. We’ll also see that W, the walker subgroup, has index 2 in Dy. Therefore,
half of the entarglerments.the dogs perform can_be resoivee-ty TIOVES executed by
the walker. In fact, all of th dogs-basic mroves-except 7' can be written in terms
of the W&lker S gepera atinig moves. T is a representstive for the non-ittentity coset of
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" Proof. We first introduce an alternative interpretation of braids that will be helpfud
/" in the current context. This is the notion of particle dances. (See [Rolf, p. 78].)1\
s Suppose we have n particles in the complex plane, initially located at the points
//'( 1 n, and that these particles begin to dance continuously in the plane, so that

. Sl EL A S e
; v:(t) € C denotes the position at time ¢ of the i-th particle, i.e, the particle that

/ started at position i. If these dancing particles pever collide and, when the music |

f _stops at t_}_me t = 1, they sit down in chairs located at 1, ..., n, then 7°(¢ (1), 1
will be the ¢-th string of a braid as defined above. Conversely, given a brsid the
projections of the string functions onto the Y- -plane yield position funetlons for

dancing particles.
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the ordered n-tuple I'(t) = (1 (t), e Yn (t)) is an element of the conﬁgumtwn spece
K,=(Cx...xC)— A, where A = {(z1,...,2,) € C"* | 2; = z; for some i # j}.
Since the particles are dancing continuously, this means that I'(¢) is then a path
in the space K, that starts at the point (1,...,n). Moreover, if all the dancing
particles return to their starting points—i.e., we have a pure braid on n-strings—
then I'(¢) is a loop in the space K.

Fact. The group P, of pure braids is isomorphic to 71 (K, ), the fundamental group
of K, with basepoint (1,...,n) [Rolf, p. 79].

Finally, S, acts on K, as usual by permuting coordinates, and B,, = w1 (&%),
\h‘ereMK ' = K,,/S,,. In what follows, we will restrict ourselves to the cast where
mn =— __

From [Fad-N, B, _1], we see that p: K3z — C given by p(z1, 22, 23) = 22, the
projection onto the secontd<factor of K3, is a locally gritial fibre bundle with fibre

F=p(2) = (C- 24 x (C~T2}) ~A~C xC - A (1)

The induced homomorphism p, between fun tnental groups sends & pure braid 7
to the loop based at 2 gotten by susidering only 1t Second strand 72

Now if we define H ~Z/ 2 to be the subgroup of &3 Penerated by (1 3), the
permutation of {1, 2, 3} Tixing 2, then H acts on K3 by restrictiot~aund K3/H is a

7 and m (K3/H) = B{?.

ricted to the fibre, F', the H-action simply permutes its first and third
nd, if we let H act trivially on C, then the maps in the fibre bundle

covering space O

When
factor

F< Kz = C (2)



* Now justrelate everything back to the dogs
* In conclusion, he found that he could reduce any number of dog moves down
to the Group D2 (basically any number of T’s and R’s)
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