- Theorem If $X=A \cup B$, and A and B are open, and $A, B, A \cap B$ are path connected, then for $x_{0} \in A \cap B$

$$
\pi_{1}\left(X, x_{0}\right) \cong<\pi_{1}\left(A, x_{0}\right), \pi_{1}\left(B, x_{0}\right) \mid\left(i_{A}\right)_{*}(h)=\left(i_{B}\right)_{*}(h) \forall h \in \pi_{1}\left(X, x_{0}\right)>
$$

where i_{A} and i_{B} are inclusion maps.

- Remember that inclusion maps are of the form $i_{A}: A \cap B \rightarrow A$, since $A \cap B \subseteq A$, where $i_{A}(a)=a$.
- This theorem gives us the power to break up complicated shapes into simpler shapes whose fundamental groups we know, in order to find the fundamental group of the complicated shape.
- This is done by taking the generators of each fundamental and relations of each of the fundamental groups, and adding the relation $\left(i_{A}\right)_{*}(h)=\left(i_{B}\right)_{*}(h) \forall h \in \pi_{1}\left(X, x_{0}\right)$.
- This added relation ensures that paths in the intersection of A and B are identified.
- We proved that this is an isomorphism by showing
- Homomorphism
* So consider the diagram of inclusion maps. Note that both i_{A} and j_{A} are inclusion maps, it is only their domains and co-domains that change. So we will use the homomorphism $\theta: \pi_{1}\left(A, x_{0}\right) * \pi_{1}\left(B, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$ by

$$
\theta=\left(j_{A}\right)_{*} *\left(j_{B}\right)_{*}
$$

This means that we do $\left(j_{A}\right)_{*}$ to elements of $\pi_{1}\left(A, x_{0}\right)$ and $\left(j_{B}\right)_{*}$ to elements of $\pi_{1}\left(B, x_{0}\right)$.

* As an example, suppose we had a word in A and B, then

$$
\theta\left(a_{1} a_{2} b_{5}\left(a_{3}\right)^{-1}\right)=\left(j_{A}\right)_{*}\left(a_{1}\right)\left(j_{A}\right)_{*}\left(a_{2}\right)\left(j_{B}\right)_{*}\left(b_{5}\right)\left(j_{A}\right)_{*}\left(a_{3}^{-1}\right)
$$

* So the first element is taken from A to $A \cap B$, etc
- One to one
* In this step we showed that elements contained in the intersection of A and elements in B that are the same element in the intersection become identified.
- Onto
* To show that the mapping is onto, we showed that every loop in X can be generated by combining loops in A and loops in B. To do so we broke up a loop in A and constructed it by using the fact that A and B are path connected and mapping to points on the loop from x_{0} until we construct the whole loop.
- After proving the isomorphic relation, we looked at the examples of $S^{1} \cup S^{2}$ and S_{2}, the 2 -torus, and generated each of their fundamental groups.

