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General Boundary Conditions:   Summary of Results  

Derivation of these most general forms is in the text, Chapter 4-9 and 5-7. 
Study them carefully.  In what follows in these notes, we give the derivations 
of the same four boundary conditions for two important special cases.  That 
is, (a) dielectric to perfect conductor boundary, and (b) general medium to 
general medium boundary with no surface charges and surface current den-
sities.

There are two ways to solve electromagnetic problems:

1.  Find out charge and current distributions everywhere in space and solve 
Maxwell’s Equations everywhere.

2.  Solve Maxwell’s Equations in a limited region of interest, subject to 
“boundary conditions” on the boundaries defining this region.  Boundary 
condition means the value of the fields just at the boundary surface.

The second method is used most often.  It is especially useful when the 
boundaries are conductors.  Boundary conditions at perfect conductors are 
fairly simple.  We usually approximate good conductors as perfect conduc-
tors in this class.
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Tangential electric field, , is
continuous.

The discontinuity of the tan-
gential field equals the sur-
face current.

The discontinuity of the normal
equals the surface charge

density.

The normal component of is
continuous.
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Boundary Conditions at a Surface of Perfect Conductor

Chapter 4-9 Text

Fields inside conductor are zero: .

1.  Boundary condition for tangential component of electric field:

Area enclosed is infinitely small.  Therefore RHS .

“ ” and “ ” are infinitely small.  Therefore,  and .

 (inside conductor) is zero.  Therefore, .

This leaves:  

                

If ab distance is finite, but small, then  is constant, and we have:

Thus, .

In vector form, this can be written:
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A very important corollary of this boundary condition is that, since  at 
the surface of a perfect conductor, 

 

between any point on or inside the conductor.  Therefore, a perfect con-
ductor is an equipotential surface.

2.  Boundary condition for tangential component of magnetic field:

Text, 5-7

The second term on the right hand side goes to zero, since the area is infi-
nitely small.

     However, the first term on the right hand side does not go to zero.  The  
reason is that, although the area is infinitely small,  can be infinitely large.  
This means that a surface current  can exist on the boundary, normal to 
the area abcd.  We have already discussed this before.

Total current enclosed in the area abcd then is .  The direction of  
must be into the paper if  on ab is in the  direction.  Then, the left 
hand side becomes (by the same reasoning  as in 1):
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Thus,  

3.  Boundary condition on normal component of electric field:

If there is only a volume charge density, the right hand side would be zero, 
since the volume of the box is infinitely small.

However, there can be a surface charge density on the surface of the con-
ductor.  Because of that:

The integral of  over the side surface is zero, since its height is infini-
tesimal.  The integral over the bottom surface is zero because the field is 
zero inside.
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Note that  is positive for  pointing outward, as it should be (Field lines 
originate on positive charges).

4.  Boundary condition on normal component of magnetic field:

We apply  to the same pillbox as in 3.

Then, obviously, since RHS , we get:

Summary of B.C.  At the surface of a perfect conductor:

Boundary conditions at boundary between two dielectrics (or two gen-
eral media).  No surface charges or currents: 

We use exactly the same methods as we did in the previous sections.  The 
main difference are that:

a.  There are fields on both sides of the boundary, since only inside per-
fect conductors are the field’s zero.

b.  Under normal conditions, there is no surface charge on the boundary.
c.  There is no surface current on boundary, since surface currents can 

exist only on a perfect conductor surface.

1.  Tangential Electric Field Component:
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2.  Tangential Magnetic Field Component:

     

3.  Normal Electric Field Component:

     

4.  Normal Magnetic Field Component:

Same as 3.

                  

5.  Examples Useful for Remembering 2. and 3.
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More on Boundary Conditions

A.  It can be easily shown that an equivalent form of Boundary Condition 1. 
(that is, tangential  continuous:  )  is:

  That is, potential is continuous at an interface.

B.  Consider , which is the boundary condition for the normal 
component of the electric displacement at the interface between a per-
fect conductor and a dielectric.

Then: 

where  means the normal derivative (that is, derivative in the direc-  

tion of the normal out of the conducting surface).  Example shortly!

C.  If the value of the potential V is given on a conducting surface, that too is 
called a boundary condition (to Laplace’s Equation).  
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