Plane Waves, Polarization and the Poynting Vector




Uniform Plane Wave in Free Space

We have previously established the following properties of plane waves in
free space:

» Electric and magnetic field components in propagation direction are zero.

- Electric and magnetic fields (E,, B, or E , B,) are related. Each is the
“source” of the other.

» A setof three second order differential equations apply, one for each field
component in rectangular coordinates. For example:
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A general solution to the Helmholz equation is written:
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E .= C,e%?4+ C,e* (C, can be complex),

where B,= w./li €, = w/C, C= speed of light.

Propagation of Magnetic Field
Suppose we have an electric field wave travelling in the positive z direction.

Recall that curl E = — jw B, or for our travelling wave,
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Electric and magnetic (B) field are orthogonal (perpendicular, Right
Hand Rule), in-phase, and the ratio of the field magnitudes is the imped-

ance.
Itis very useful to express this ratio of electric and magnetic fields in terms
of H, rather than B.
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Dimensional analysis: | H€my/m _ \/Joule/ amp? _ volt _ Ohm!!!
Farad/m Joule/volt?  amp

or:

Electric fields are volts/meter and H fields are amps/meter.
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E /
= [Be o N, Ohms, n,= 1207 = 377 Ohms (impedance of freespace)
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For a wave travelling in the — &, direction, v

* = —1),. This just means that

= A . . y . . _’
E, is oriented along the — €, direction (or equivalently with H ).

Summary:
E and H are perpendicular to each other and propagation direction.

Right Hand Rule gives direction.

- Ratio of H to E is the intrinsic wave impedance, 1,. The wavelength is
the distance that the wave travels so that the phase changes by 27 radi-

ans.
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* Picture:

 Phase velocity, v,

To understand the phase velocity, we must return to the real representation
of the field with both space and time dependence; that is,

E = E,,, cos(ot-f,2)

Consider an observer moving along in zZ at the same point, say the peak, of
the oscillating field. This means mathematically that:

ot — B,z= 0 or any constant. Thus, wdt = ,dz,

or d—z -0 _ V,, the phase velocit
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Polarization of Place Waves

Consider the propagation characteristics of a plane wave in which the elec-
tric field has components in both the X and Yy directions:

—

E=(E,&+E,é)e

X

where the field components may be complex. That is,
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or in real form:

Zy
This is linear polarization.
Now we consider a more general case.

Elliptical Polarization

In this case we allow arbitrary phase relationships a and b:
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It is easier to see what this means if we write each component out in real
form:

.= |E, )
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Suppose we let a=0 and b= /2. Then:

(ot—B2)
= —‘E ‘sm(a)t B2)

E, =
E,

What can we say about E(zt) = E &, + E £,?
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Make a plot in the X-y plane with t as a parameter and |E,| = 1, ‘Ey‘ =
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This clockwise rotation describes an ellipse, with major axes parallel to the X
axis. As the wave propagates along z, the ellipse spreads out to an elliptical
helix. This is called elliptical polarization. For the special case of |E,| = ‘Ey‘,
we have circular polarization. If we had chosen b =—7x/2, we would have
found that an identical ellipse would be formed except that the rotation
would be counter-clockwise.

Poynting Theorem

We know that energy is propagated by waves, in general, and electromag-
netic waves, in particular. We need to quantify the associated power flow.
We easily obtain a hint of how to calculate power flow by recalling our circuit
theory, where P = VI”, or by a dimensional analysis of the fields.

Remember that the units of H are Amp/meter and the units of E are V/m.
Their product Amp Volts/n¥ has units of Watts/area, which is a power den-
sity, just what we want. The product must clearly have a direction associ-
ated with it, and it ought to somehow point in a reasonable direction. A
reasonable direction for power flow in lossless, homogeneous, linear media,
such as free space, would be in the direction of propagation. We might
therefore guess that Ex H would be a reasonable definition of power den-
Sity.

We will consider the complex Poynting vector for time harmonic plane elec-
tromagnetic waves in phasor notation. This requires some thought because



of the nonlinear nature of ExH .

Let E(zt) = Re[E(2)e’']é, and

H(zt) = Re[H (2)e™']é

y
We will write out the real and imaginary parts of E and H.
E(zt) = Re[E,(2)e"' +]E (2)e']¢, and

H(zt) = Re[H (20 +[H (2)e/]é

y

Now expand the complex exponential and take the real part:
E(zt) = [Er(z) coswt — Ei(z)sina)t]éX
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The Poynting vector is: P(zt) = ExH =
[Er H. cos’wt+E H sinwt—E, H, cosotsinwt—E, H, sina)tcosa)t] é,

The time average Poynting vector is:
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The very same expression can be obtained directly from the phasors by the
following rule:

B(zt) = SRe(ExH*) = TRe[(E, +]E,)e.x (A, iA,)8 ]
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Example
What is the time average Poynting vector for a plane wave propagating in
free space with the following (phasor) fields:
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Then (f’av(z,t) = %Re(l? %

or:
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