
Plane Waves, Polarization and the Poynting Vector
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Uniform Plane Wave in Free Space

We have previously established the following properties of plane waves in 
free space:

• Electric and magnetic field components in propagation direction are zero.

• Electric and magnetic fields (  or ) are related.  Each is the 
“source” of the other.

• A set of three second order differential equations apply, one for each field 
component in rectangular coordinates.  For example:

 ,

or for harmonic fields, in phasor notation:

A general solution to the Helmholz equation is written:

 (  can be complex),

where , speed of light.

Propagation of Magnetic Field

Suppose we have an electric field wave travelling in the positive z direction.  
Recall that , or for our travelling wave, 
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• Electric and magnetic ( ) field are orthogonal (perpendicular, Right 
Hand Rule), in-phase, and the ratio of the field magnitudes is the imped-
ance.

It is very useful to express this ratio of electric and magnetic fields in terms 
of , rather than .

Dimensional analysis: 

or:

Electric fields are volts/meter and  fields are amps/meter.

 Ohms,  Ohms (impedance of freespace)

For a wave travelling in the  direction, .  This just means that 

 is oriented along the  direction (or equivalently with ).

Summary:

•  and  are perpendicular to each other and propagation direction.  
Right Hand Rule gives direction.

• Ratio of  to  is the intrinsic wave impedance, .  The wavelength is 
the distance that the wave travels so that the phase changes by  radi-
ans.
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• Picture:

• Phase velocity, 

To understand the phase velocity, we must return to the real representation 
of the field with both space and time dependence; that is,

Consider an observer moving along in z at the same point, say the peak, of 
the oscillating field.  This means mathematically that:

Polarization of Place Waves

Consider the propagation characteristics of a plane wave in which the elec-
tric field has components in both the x and y directions:

,

where the field components may be complex.  That is, 

In phase ,
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or in real form:

This is linear polarization.

Now we consider a more general case.

Elliptical Polarization

In this case we allow arbitrary phase relationships a and b:

It is easier to see what this means if we write each component out in real 
form:

Suppose we let  and .  Then:

What can we say about ?
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Make a plot in the x-y plane with t as a parameter and .

This clockwise rotation describes an ellipse, with major axes parallel to the x 
axis.  As the wave propagates along z, the ellipse spreads out to an elliptical 
helix.  This is called elliptical polarization.  For the special case of , 
we have circular polarization.  If we had chosen , we would have 
found that an identical ellipse would be formed except that the rotation 
would be counter-clockwise.

Poynting Theorem

We know that energy is propagated by waves, in general, and electromag-
netic waves, in particular.  We need to quantify the associated power flow.  
We easily obtain a hint of how to calculate power flow by recalling our circuit 
theory, where , or by a dimensional analysis of the fields.

Remember that the units of H are Amp/meter and the units of E are V/m.
Their product Amp Volts/m2 has units of Watts/area, which is a power den-
sity, just what we want.  The product must clearly have a direction associ-
ated with it, and it ought to somehow point in a reasonable direction.  A 
reasonable direction for power flow in lossless, homogeneous, linear media, 
such as free space, would be in the direction of propagation.  We might 
therefore guess that  would be a reasonable definition of power den-
sity.

We will consider the complex Poynting vector for time harmonic plane elec-
tromagnetic waves in phasor notation.  This requires some thought because 
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of the nonlinear nature of .

     Let  and 

           

We will write out the real and imaginary parts of E and H.

Now expand the complex exponential and take the real part:

The Poynting vector is:  

The time average Poynting vector is:

The very same expression can be obtained directly from the phasors by the 
following rule:
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Example

What is the time average Poynting vector for a plane wave propagating in 
free space with the following (phasor) fields:
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