PARALLEL-PLATE WAVEGUIDES

Wave Equation

$$
\begin{equation*}
\nabla^{2} \mathbf{E}+\omega^{2} \mu \varepsilon \mathbf{E}=\mathbf{0} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial^{2} \mathrm{E}_{\mathrm{x}}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \mathrm{E}_{\mathrm{x}}}{\partial \mathrm{y}^{2}}+\frac{\partial^{2} \mathrm{E}_{\mathrm{x}}}{\partial \mathrm{z}^{2}}=-\omega^{2} \mu \varepsilon \mathrm{E}_{\mathrm{x}} \tag{2a}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial^{2} \mathrm{E}_{\mathrm{y}}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \mathrm{E}_{\mathrm{y}}}{\partial \mathrm{y}^{2}}+\frac{\partial^{2} \mathrm{E}_{\mathrm{y}}}{\partial \mathrm{z}^{2}}=-\omega^{2} \mu \varepsilon \mathrm{E}_{\mathrm{y}} \tag{2b}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial^{2} \mathrm{E}_{\mathrm{z}}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \mathrm{E}_{\mathrm{z}}}{\partial y^{2}}+\frac{\partial^{2} \mathrm{E}_{\mathrm{z}}}{\partial \mathrm{z}^{2}}=-\omega^{2} \mu \varepsilon \mathrm{E}_{\mathrm{z}} \tag{2c}
\end{equation*}
$$

Transverse Electric (TE) Modes
For a parallel-plate waveguide, the plates are infinite in the y-extent; we need to study the propagation in the z -direction. The following assumptions are made in the wave equation

$$
\begin{aligned}
& \Rightarrow \frac{\partial}{\partial y}=0, \text { but } \frac{\partial}{\partial x} \neq 0 \text { and } \frac{\partial}{\partial z} \neq 0 \\
& \Rightarrow \text { Assume } E_{y} \text { only }
\end{aligned}
$$

These two conditions define the TE modes and the wave equation is simplified to read

$$
\begin{equation*}
\frac{\partial^{2} \mathrm{E}_{\mathrm{y}}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \mathrm{E}_{\mathrm{y}}}{\partial \mathrm{z}^{2}}=-\omega^{2} \mu \varepsilon \mathrm{E}_{\mathrm{y}} \tag{3}
\end{equation*}
$$

General solution (forward traveling wave)

$$
\begin{equation*}
E_{y}(x, z)=e^{-j \beta_{z} z}\left[A e^{-j \beta_{x} x}+B e^{+j \beta_{x} x}\right] \tag{4}
\end{equation*}
$$

At $\mathrm{x}=0, \mathrm{E}_{\mathrm{y}}=0$ which leads to $\mathrm{A}+\mathrm{B}=0$. Therefore, $\mathrm{A}=-\mathrm{B}=\mathrm{E}_{\mathrm{O}} / 2 \mathrm{j}$, where E_{O} is an arbitrary constant

$$
\begin{equation*}
E_{y}(x, z)=E_{o} e^{-j \beta_{z} z} \sin \beta_{x} x \tag{5}
\end{equation*}
$$

μ, ε
$\mathrm{x}=0$

At $\mathrm{x}=\mathrm{a}, \mathrm{E}_{\mathrm{y}}(\mathrm{x}, \mathrm{z})=0$. Let a be the distance separating the two PEC plates

$$
\begin{equation*}
E_{o} e^{-j \beta_{z} z} \sin \beta_{x} a=0 \tag{6}
\end{equation*}
$$

This leads to :

$$
\begin{equation*}
\beta_{\mathrm{x}} \mathrm{a}=\mathrm{m} \pi \text {, where } \mathrm{m}=1,2,3, \ldots \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
\beta_{\mathrm{x}}=\frac{\mathrm{m} \pi}{\mathrm{a}} \tag{8}
\end{equation*}
$$

Moreover, from the differential equation (3), we get the dispersion relation

$$
\begin{equation*}
\beta_{\mathrm{z}}^{2}+\beta_{\mathrm{x}}^{2}=\omega^{2} \mu \varepsilon=\beta^{2} \tag{9}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
\beta_{z}=\sqrt{\omega^{2} \mu \varepsilon-\left(\frac{m \pi}{a}\right)^{2}} \tag{10}
\end{equation*}
$$

where $\mathrm{m}=1,2,3, \ldots$ Since propagation is to take place in the z direction, for the wave to propagate, we must have $\beta_{\mathrm{z}}{ }^{2}>0$, or

$$
\begin{equation*}
\omega^{2} \mu \varepsilon>\left(\frac{\mathrm{m} \pi}{\mathrm{a}}\right)^{2} \tag{11}
\end{equation*}
$$

This leads to the following guidance condition which will insure wave propagation

$$
\begin{equation*}
\mathrm{f}>\frac{\mathrm{m}}{2 \mathrm{a} \sqrt{\mu \varepsilon}} \tag{12}
\end{equation*}
$$

The cutoff frequency f_{c} is defined to be at the onset of propagation

$$
\begin{equation*}
\mathrm{f}_{\mathrm{c}}=\frac{\mathrm{m}}{2 \mathrm{a} \sqrt{\mu \varepsilon}} \tag{13}
\end{equation*}
$$

The cutoff frequency is the frequency below which the mode associated with the index m will not propagate in the waveguide. Different modes will have different cutoff frequencies. The cutoff frequency of a mode is associated with the cutoff wavelength λ_{c}

$$
\begin{equation*}
\lambda_{\mathrm{c}}=\frac{\mathrm{v}}{\mathrm{f}_{\mathrm{c}}}=\frac{2 \mathrm{a}}{\mathrm{~m}} \tag{14}
\end{equation*}
$$

Each mode is referred to as the TE_{m} mode (or $\mathrm{TE}_{\mathrm{m}, 0}$ in Rao's book). From (6), it is obvious that there is no TE_{0} mode and the first TE mode is the TE_{1} mode.

Magnetic Field

$$
\begin{equation*}
\text { From } \nabla \times \mathbf{E}=-j \omega \mu \mathbf{H} \tag{15}
\end{equation*}
$$

we have

$$
\mathbf{H}=\frac{-1}{j \omega \mu}\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \tag{16}\\
\frac{\partial}{\partial \mathrm{x}} & 0 & \frac{\partial}{\partial z} \\
0 & \mathrm{E}_{\mathrm{y}} & 0
\end{array}\right|
$$

which leads to

$$
\begin{align*}
& H_{x}=-\frac{\beta_{z}}{\omega \mu} E_{o} e^{-j \beta_{z} z} \sin \beta_{x} x \tag{17}\\
& H_{z}=+\frac{j \beta_{x}}{\omega \mu} E_{0} e^{-j \beta_{z} z} \cos \beta_{x} x \tag{18}
\end{align*}
$$

As can be seen, there is no H_{y} component, therefore, the TE solution has $\mathrm{E}_{\mathrm{y}}, \mathrm{H}_{\mathrm{x}}$ and H_{z} only.

From the dispersion relation, it can be shown that the propagation vector components satisfy the relations

$$
\begin{equation*}
\beta_{\mathrm{z}}=\beta \sin \theta, \beta_{\mathrm{x}}=\beta \cos \theta \tag{19}
\end{equation*}
$$

where θ is the angle of incidence of the propagation vector with the normal to the conductor plates.

Transverse Magnetic (TM) modes

The magnetic field also satisfies the wave equation:

$$
\begin{align*}
& \nabla^{2} \mathbf{H}+\omega^{2} \mu \varepsilon \mathbf{H}=\mathbf{0} \tag{20}\\
& \frac{\partial^{2} \mathrm{H}_{\mathrm{x}}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \mathrm{H}_{\mathrm{x}}}{\partial \mathrm{y}^{2}}+\frac{\partial^{2} \mathrm{H}_{\mathrm{x}}}{\partial \mathrm{z}^{2}}=-\omega^{2} \mu \varepsilon \mathrm{H}_{\mathrm{x}} \tag{21a}\\
& \frac{\partial^{2} \mathrm{H}_{\mathrm{y}}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \mathrm{H}_{\mathrm{y}}}{\partial \mathrm{y}^{2}}+\frac{\partial^{2} \mathrm{H}_{\mathrm{y}}}{\partial \mathrm{z}^{2}}=-\omega^{2} \mu \varepsilon \mathrm{H}_{\mathrm{y}} \tag{21b}\\
& \frac{\partial^{2} \mathrm{H}_{\mathrm{z}}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \mathrm{H}_{\mathrm{z}}}{\partial \mathrm{y}^{2}}+\frac{\partial^{2} \mathrm{H}_{\mathrm{z}}}{\partial \mathrm{z}^{2}}=-\omega^{2} \mu \varepsilon \mathrm{H}_{\mathrm{z}} \tag{21c}
\end{align*}
$$

For TM modes, we assume

$$
\begin{aligned}
& \Rightarrow \frac{\partial}{\partial y}=0, \text { but } \frac{\partial}{\partial x} \neq 0 \text { and } \frac{\partial}{\partial z} \neq 0 \\
& \Rightarrow \text { Assume } \mathrm{H}_{\mathrm{y}} \text { only }
\end{aligned}
$$

These two conditions define the TM modes and equations (21) are simplified to read

$$
\begin{equation*}
\frac{\partial^{2} \mathrm{H}_{\mathrm{y}}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \mathrm{H}_{\mathrm{y}}}{\partial \mathrm{z}^{2}}=-\omega^{2} \mu \varepsilon \mathrm{H}_{\mathrm{y}} \tag{22}
\end{equation*}
$$

General solution (forward traveling wave)

$$
\begin{equation*}
H_{y}(x, z)=e^{-j \beta_{z} z}\left[A e^{-j \beta_{x} x}+B e^{+j \beta_{x} x}\right] \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
\text { From } \nabla \times \mathbf{H}=j \omega \varepsilon \mathbf{E} \tag{24}
\end{equation*}
$$

we get

$$
\mathbf{E}=\frac{1}{j \omega \varepsilon}\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \tag{25}\\
\frac{\partial}{\partial \mathrm{x}} & 0 & \frac{\partial}{\partial \mathrm{z}} \\
0 & \mathrm{H}_{\mathrm{y}} & 0
\end{array}\right|
$$

This leads to

$$
\begin{align*}
& E_{x}(x, z)=\frac{\beta_{z}}{\omega \varepsilon} e^{-j \beta_{z} z}\left[A e^{-j \beta_{x} x}+B e^{+j \beta_{x} x}\right] \tag{26}\\
& E_{z}(x, z)=\frac{\beta_{x}}{\omega \varepsilon} e^{-j \beta_{z} z}\left[-A e^{-j \beta_{x} x}+B e^{+j \beta_{x} x}\right] \tag{27}
\end{align*}
$$

At $\mathrm{x}=0, \mathrm{E}_{\mathrm{Z}}=0$ which leads to $\mathrm{A}=\mathrm{B}=\mathrm{H}_{0} / 2$ where H_{O} is an arbitrary constant. This leads to

$$
\begin{align*}
& \mathrm{H}_{\mathrm{y}}(\mathrm{x}, \mathrm{z})=\mathrm{H}_{\mathrm{o}} \mathrm{e}^{-\mathrm{j} \beta_{\mathrm{z}} \mathrm{z}} \cos \beta_{\mathrm{x}} \mathrm{x} \tag{28}\\
& \mathrm{E}_{\mathrm{x}}(\mathrm{x}, \mathrm{z})=\frac{\beta_{\mathrm{z}}}{\omega \varepsilon} \mathrm{H}_{\mathrm{o}} \mathrm{e}^{-\mathrm{j} \beta_{\mathrm{z}} \mathrm{z}} \cos \beta_{\mathrm{x}} \mathrm{x} \tag{29}\\
& \mathrm{E}_{\mathrm{z}}(\mathrm{x}, \mathrm{z})=\frac{\mathrm{j} \beta_{\mathrm{x}}}{\omega \varepsilon} \mathrm{H}_{\mathrm{o}} \mathrm{e}^{-\mathrm{j} \beta_{\mathrm{z}} \mathrm{z}} \sin \beta_{\mathrm{x}} \mathrm{x} \tag{30}
\end{align*}
$$

At $\mathrm{x}=\mathrm{a}, \mathrm{E}_{\mathrm{Z}}=0$ which leads to

$$
\begin{equation*}
\beta_{x} a=m \pi \text {, where } m=0,1,2,3, \ldots \tag{31}
\end{equation*}
$$

This defines the TM modes which have only $\mathrm{H}_{\mathrm{y}}, \mathrm{E}_{\mathrm{X}}$ and E_{Z} components.

NOTE: THE DISPERSION RELATION, GUIDANCE CONDITION AND CUTOFF EQUATIONS FOR A PARALLEL-PLATE WAVEGUIDE ARE THE SAME FOR TE AND TM MODES.

Equation (31) defines the TM modes; each mode is referred to as the TM_{m} mode (or $\mathrm{TM}_{\mathrm{m}, 0}$ in Rao's book). It can be seen from (28) that $\mathrm{m}=0$ is a valid choice; it is called the TM_{0}, or transverse electromagnetic or TEM mode. For this mode $\beta_{\mathrm{x}}=0$ and,

$$
\begin{align*}
& \mathrm{H}_{\mathrm{y}}=\mathrm{H}_{\mathrm{o}} \mathrm{e}^{-\mathrm{j} \beta_{z} z} \tag{32}\\
& \mathrm{E}_{\mathrm{x}}=\frac{\beta_{\mathrm{z}}}{\omega \varepsilon} \mathrm{H}_{\mathrm{o}} \mathrm{e}^{-\mathrm{j} \beta_{z} z}=\sqrt{\frac{\mu}{\varepsilon}} \mathrm{H}_{\mathrm{o}} \mathrm{e}^{-\mathrm{j} \beta_{z} z} \tag{33}\\
& \mathrm{E}_{\mathrm{z}}=0 \tag{34}
\end{align*}
$$

where $\beta_{\mathrm{z}}=\beta$, and in which there are no x variations of the fields within the waveguide. The TEM mode has a cutoff frequency at DC and is always present in the waveguide.

Time-Average Poynting Vector
TE modes

$$
\begin{align*}
& \langle\mathbf{P}\rangle=\frac{1}{2} \operatorname{Re}\{\mathbf{E} \times \mathbf{H} *\} \tag{35}\\
& \langle\mathbf{P}\rangle=\frac{1}{2} \operatorname{Re}\left\{\hat{\mathbf{y}} \mathrm{E}_{\mathrm{y}} \times\left[\hat{\mathbf{x}} \mathrm{H}_{\mathrm{x}}^{*}+\hat{\mathbf{z}} \mathrm{H}_{\mathrm{z}}^{*}\right]\right\} \tag{36}\\
& \langle\mathbf{P}\rangle=\frac{1}{2} \operatorname{Re}\left\{\hat{\mathbf{z}} \frac{\left.\mathrm{E}_{\mathrm{o}}\right|^{2}}{\omega \mu} \beta_{\mathrm{z}} \sin ^{2} \beta_{\mathrm{x}} \mathrm{x}+\hat{\mathbf{x}} \mathrm{\mid} \frac{\left.\mathrm{E}_{\mathrm{o}}\right|^{2}}{\omega \mu} \beta_{\mathrm{x}} \cos \beta_{\mathrm{x}} \mathrm{x} \sin \beta_{\mathrm{x}} \mathrm{x}\right\} \tag{37}\\
& \langle\mathbf{P}\rangle=\hat{\mathbf{z}} \frac{\left.\mathrm{E}_{\mathrm{o}}\right|^{2}}{\omega \mu} \beta_{\mathrm{z}} \sin ^{2} \beta_{\mathrm{x}} \mathrm{x} \tag{38}
\end{align*}
$$

TM modes

$$
\begin{align*}
& \langle\mathbf{P}\rangle=\frac{1}{2} \operatorname{Re}\left\{\mathbf{E} \times \mathbf{H}^{*}\right\} \tag{39}\\
& \langle\mathbf{P}\rangle=\frac{1}{2} \operatorname{Re}\left\{\left[\hat{\mathbf{x}} \mathrm{E}_{\mathrm{x}}+\hat{\mathbf{z}} \mathrm{E}_{\mathrm{z}}\right] \times \hat{\mathbf{y}} \mathrm{H}_{\mathrm{y}}^{*}\right\} \tag{40}\\
& \langle\mathbf{P}\rangle=\frac{1}{2} \operatorname{Re}\left\{\hat{\mathbf{z}} \frac{\left|\frac{\mathrm{H}_{\mathrm{o}}}{\omega \varepsilon}\right|^{2}}{\omega \mathrm{z}} \cos ^{2} \beta_{\mathrm{x}} \mathrm{x}-\hat{\mathbf{x}} \mathrm{j} \frac{\left|\mathrm{H}_{\mathrm{o}}\right|^{2}}{\omega \varepsilon} \beta_{\mathrm{x}} \sin \beta_{\mathrm{x}} \mathrm{x} \cos \beta_{\mathrm{x}} \mathrm{x}\right\} \tag{41}\\
& \langle\mathbf{P}\rangle=\hat{\mathbf{z}} \frac{\left|\mathrm{H}_{\mathrm{o}}\right|^{2}}{\omega \varepsilon} \beta_{\mathrm{z}} \cos ^{2} \beta_{\mathrm{x}} \mathrm{x} \tag{42}
\end{align*}
$$

The total time-average power is found by integrating $\langle\mathbf{P}\rangle$ over the area of interest.

