
PARALLEL-PLATE  WAVEGUIDES

Wave Equation
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Transverse Electric (TE) Modes

For a parallel-plate waveguide, the plates are infinite in the y-extent; we need to study the

propagation in the z-direction.  The following assumptions are made in the wave equation

⇒ ∂
∂y  = 0,  but 

∂
∂x  ≠ 0 and 

∂
∂z  ≠ 0

⇒ Assume Ey only

These two conditions define the TE modes and the wave equation is simplified to read
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     General solution (forward traveling wave)   

E x z e Ae Bey
j z j x j xz x x( , ) = +[ ]− − +β β β

(4)
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At x = 0, Ey = 0 which leads to A + B = 0.  Therefore, A = -B = Eo/2j, where Eo is an arbitrary

constant
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At x = a, Ey(x, z) = 0.  Let a be the distance separating the two PEC plates

E e ao
j z

x
z− =β βsin 0 (6)

This leads to :

βxa = mπ, where m = 1, 2, 3, ... (7)

or

βx = 
mπ
a  (8)

Moreover, from the differential equation (3), we get the dispersion relation

βz2 + βx2 = ω2µε = β2, (9)

which leads to
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where m = 1, 2, 3, ...  Since propagation is to take place in the z direction, for the wave to

propagate, we must have βz2 > 0, or

ω µε π2
2

> 





m
a (11)

This leads to the following guidance condition which will insure wave propagation
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The cutoff frequency fc is defined to be at the onset of propagation

f
m

ac =
2 µε (13)

The cutoff frequency is the frequency below which the mode associated with the index m will

not propagate in the waveguide.  Different modes will have different cutoff frequencies.  The

cutoff frequency of a mode is associated with the cutoff wavelength λc

λc = 
v
fc

  = 
2a
m (14)

Each mode is referred to as the TEm mode (or TEm,0 in Rao's book).  From (6), it is obvious that

there is no TE0 mode and the first TE mode is the TE1 mode.

Magnetic Field

From ∇ ×  E = − jωµH (15)

we have
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which leads to
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As can be seen, there is no Hy component, therefore, the TE solution has Ey, Hx and Hz only.
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From the dispersion relation, it can be shown that the propagation vector components satisfy the

relations
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βz = βsinθ, βx = βcosθ (19)

where θ is the angle of incidence of the propagation vector with the normal to the conductor

plates.

Transverse Magnetic (TM) modes

The magnetic field also satisfies the wave equation:

∇ 2H + ω2µεH = 0 (20)
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For TM modes, we assume

⇒ ∂
∂y  = 0,  but 

∂
∂x  ≠ 0 and 

∂
∂z  ≠ 0

⇒ Assume Hy only

These two conditions define the TM modes and equations (21) are simplified to read
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     General solution (forward traveling wave)   

H x z e Ae Bey
j z j x j xz x x( , ) = +[ ]− − +β β β (23)

From ∇ × H = jωεE (24)

we get
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This leads to
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At x=0, Ez = 0 which leads to A = B = Ho/2 where Ho is an arbitrary constant.  This leads to
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At x =a, Ez = 0 which leads to

βxa = mπ, where m = 0, 1, 2, 3, ... (31)

This defines the TM modes which have only Hy, Ex and Ez components.

NOTE: THE DISPERSION RELATION, GUIDANCE CONDITION AND CUTOFF EQUA-

TIONS FOR A PARALLEL-PLATE WAVEGUIDE ARE THE SAME FOR TE AND TM

MODES.

Equation (31) defines the TM modes; each mode is referred to as the TMm mode (or TMm,0 in

Rao's book).  It can be seen from (28) that m=0 is a valid choice; it is called the TM0, or

transverse electromagnetic or TEM mode.  For this mode βx=0 and,

H H ey o
j zz= − β (32)
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Ez = 0 (34)
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where βz = β, and in which there are no x variations of the fields within the waveguide.  The

TEM mode has a cutoff frequency at DC and is always present in the waveguide.
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TEM mode

Time-Average Poynting Vector

    TE modes

P E H *= ×{ }1
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Re (35)
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    TM modes
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The total time-average power is found by integrating <P> over the area of interest.


