Sample Exam. Good Luck!

1. A load impedance $Z_L = 35 + j75 \, \Omega$ to a transmission line with characteristic impedance $Z_o = 50 \, \Omega$. A short-circuit stub is placed directly at the load. The length of the stub at directly at the load is 0.176λ. What is the new admittance upon adding this stub?

2. Find the Standing Wave Ratio of the load $Z_L = 35 + j75 \, \Omega$ on a 50 \, \Omega line.

3. Find the Reflection Coefficient of the load $Z_L = 35 + j75 \, \Omega$ on a 50 \, \Omega line.

4. For the vector field $\vec{E} = \hat{x}2xy - \hat{y}(x^3 + 0.5y^2)$, and given the contour shown below:
 Calculate
 (a) $\oint \vec{E} \cdot d\vec{l}$
 (b) $\int_S (\nabla \times \vec{E}) \cdot d\vec{s}$

5. If $\vec{E} = \hat{x}E_o e^{-jkz}$ in a region,
 (a) Find the corresponding magnetic field.
 (b) Find $\vec{E}(t)$
 (c) Find $\vec{H}(t)$
 (d) Find the instantaneous power density (or Poynting vector).
 (e) Find the time-average Poynting vector.