EE 194 RF: Lecture 1

- Importance of RF circuit design
 - wireless communications (explosive growth of cell phones)
 - global positioning systems (GPS)
 - computer engineering (bus systems, CPU, peripherals exceeding 600 MHz)
- Why this course???
 - lumped circuit representation no longer applies!

What do we mean by going from lumped to distributed theory?

• Example: INDUCTOR

Current and voltage vary spatially over the component size

E (or V) and H (or I) fields

Upper MHz to GHz range

EE194RF_L1

Frequency spectrum

- RadioFrequency (RF)
 - TV, wireless phones, GPS
 - 300 MHz ... 3 GHz operational frequency
 - 1 m ... 10 cm wavelength in **air**
- MicroWave (MW)
 - RADAR, remote sensing
 - 8 GHz ... 40 GHz operational frequency
 - 3.75 cm ...7.5 mm wavelength in air

Design Focus

Cell phone transceiver circuit

Typical frequency range:

- 950 MHz
- 1.9 GHz

Implementation

- matching networks
- BJT/FET active devices
- biasing circuits

- printed circuit board
- mircostripline realization
- surface mount technology