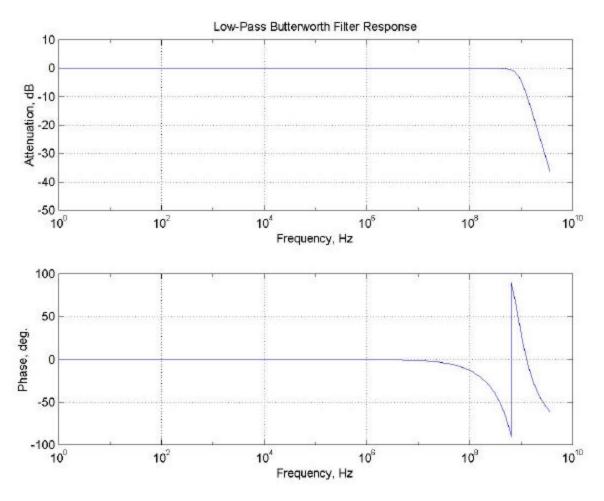
Low-Pass Filter Design Example

- Design a Low-Pass Filter with cut-off frequency of 900 MHz and a stop band attenuation of 18 dB @ 1.8 GHz.
- From the Butterworth Nomograph, $A_{max} = 1$ and $A_{min} = 18$. $A_{max} = 1$ since unity gain. And the order of the filter is N = 3.
- From Butterworth Tables, $g_1 = g_3 = 1.0$ and $g_2 = 2$.


Low-Pass Filter Design Example

• De-Normalized Values For the Tee-Configuration Low-Pass Filter Are:

$$L_1 = L_2 = \frac{g_1 R_L}{2\mathbf{p} \left(900 \times 10^6\right)} = 8.8 \ nH$$

$$C_1 = \frac{g_2}{2\mathbf{p} \left(900 \times 10^6\right) R_L} = 7 \ pF$$

Low-Pass Filter Design Example

EEE 194RF_ L18 3

Low- To High-Pass Transformation

- Transform the Low-Pass Filter Normalized Component Values to the Normalized High-Pass Values
- Inductors in Low-Pass Configuration Become Capacitors in High-Pass.
- Capacitors in Low-Pass Configuration Become Inductors in High-Pass

•
$$C_{HP_norm} = \frac{1}{\mathbf{w}_c L_{LP_norm}}$$
; $L_{HP_norm} = \frac{1}{\mathbf{w}_c C_{LP_norm}}$

RF Filter Parameters

- Insertion Loss: $IL = 10 log \frac{P_{in}}{P_L} = -10 log \left(1 \left|\Gamma_{in}\right|^2\right)$
- Ripple
- Bandwidth: $BW^{3dB} = f_u^{3dB} f_L^{3dB}$
- Shape Factor: $SF = \frac{BW_{A_{min}}}{BW_{A_{max}}}$
- Rejection

De-Normalizing Filter Component Values

• All Normalized Component Values Are De-Normalized Using the Following:

$$C_{actual} = \frac{C_{normalized}}{R_g}$$

and

$$L_{actual} = L_{normalized} R_g$$

Transformation From Low-Pass Filter

Table 5-5 Transformation between normalized low-pass filter and actual bandpass and bandstop filter $(BW = \omega_U - \omega_L)$

Low-pass prototype	Low-pass	High-pass	Bandpass	Bandstop
$\begin{cases} L = g_k \end{cases}$	$\frac{L}{\omega_c}$	$\frac{1}{\Box}$ $\frac{1}{\omega_c L}$	$ \begin{array}{ccc} \frac{1}{BW} \\ \frac{1}{W} \\ \frac{1}{$	$\frac{1}{(BW)L} = \frac{1}{3} \frac{(BW)L}{\omega_0^2}$
$\int_{C}^{\infty} C = g_k$	$\frac{1}{\Box} \frac{C}{\omega_c}$	$\begin{cases} \frac{1}{\omega_c C} \end{cases}$	$\frac{C}{BW} = \frac{BW}{\omega_0^2 C}$	$ \begin{array}{c} \frac{1}{(BW)C} \\ \frac{(BW)C}{\omega_0^2} \end{array} $

Normalized Low- to Band-Pass Filter Transformation

 Normalized Band-Pass Shunt Elements from Shunt Low-Pass Capacitor:

$$L_{BP_norm_shunt} = \frac{\mathbf{w}_{upper} - \mathbf{w}_{lower}}{\mathbf{w}_o^2 C_{LP_norm}}$$

$$C_{BP_norm_shunt} = \frac{C_{LP_norm}}{\mathbf{w}_{upper} - \mathbf{w}_{lower}}$$

Normalized Low- to Band-Pass Filter Transformation

 Normalized Band-Pass Series Elements from Series Low-Pass Inductor:

$$L_{BP_norm_series} = \frac{L_{LP_norm}}{\mathbf{w}_{upper} - \mathbf{w}_{lower}}$$

$$C_{BP_norm_series} = \frac{\mathbf{w}_{upper} - \mathbf{w}_{lower}}{\mathbf{w}_o^2 L_{LP_norm}}$$

Normalized Low- to Band-Stop Filter Transformation

• Normalized Band-Stop Shunt Component Values from Low-Pass Shunt Capacitor:

$$L_{Stop_norm_shunt} = \frac{1}{\left(\mathbf{w}_{upper} - \mathbf{w}_{lower}\right)C_{LP_norm}}$$

$$C_{Stop_norm_shunt} = \frac{\left(\mathbf{w}_{upper} - \mathbf{w}_{lower}\right)C_{LP_norm}}{\mathbf{w}_{o}^{2}}$$

Normalized Low- to Band-Stop Filter Transformation

 Normalized Band-Stop Series Component Values from Low-Pass Series Inductor:

$$L_{Stop_norm_series} = \frac{\left(\mathbf{w}_{upper} - \mathbf{w}_{lower}\right) L_{LP_norm}}{\mathbf{w}_{o}^{2}}$$

$$C_{Stop_norm_series} = \frac{1}{\left(\mathbf{w}_{upper} - \mathbf{w}_{lower}\right) L_{LP_norm}}$$