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Waves and Impedances on Transmission Lines 

 
 
Transmission Line Circuit Model1 
 
Consider a transmission line consisting of iterated incremental elements as shown here: 
 

Z

Y

Z = R + j ωL

Y = G + j ωC

I

V

 
 
Z and Y are the impedance and admittance per unit length ?z. 
 
Z = R + jωL  and  Y = G + jωC, where 
 
R is the series resistance per unit length ?z, Ω/m 
L is the series inductance per unit length ?z, H/m 
G is the shunt conductance per unit length ?z, S/m 
C is the shunt capacitance per unit length ?z, F/m 
 
The equations for V and I are 
 
dV
dz   = ZI  and  

dI
dz  = YV, simultaneous solution of which yields 

 
d2V
dz2   = ZYV  and  

d2I
dz2  = ZYI;  z here represents distance along the transmission line. 

 
The solution of these equations is in the form of waves in the +z and -z direction, which for 
sinusoidal excitation take the form  
 
V(z) = V+eωt-jγz + V-eωt+jγz)  and  I(z) = I+e(ωt-jγz)+ I+e(ωt+jγz) 
 
                                                 
1  This particular derivation is from Terman, Electronic and Radio Engineering, 4th Ed., McGraw-Hill, 1955, 
Ch. 4 
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The propagation constant γ is given by  
 
γ = α  + jβ = ZY .  For ωL>>R and ωC>>G (low or zero loss case), 
 
β = ω LC   
 
The voltage and current functions represent waves in each direction such that successive peaks 
and troughs move at a velocity 
 

v = 
ω
ß   = fλ , so β = 

2p
λ   

 
To distinguish it from the free-space wavelength nomenclature λ or λo, the wavelength on a 
waveguide or coaxial transmission line is often referred to as the guide wavelength λg. 
 
For a single wave solution in one direction, the ratio V(z)/I(z) is the same everywhere on the 
line, and is defined as the characteristic impedance Zo, which for a lossless line is a real 
number 
 

Zo = 
V+
I+

  = 
Z
Y  = 

L
C  , where L and C are the inductance and capacitance per unit length. 

 
Thus we can rewrite the current equation as 
 

I(z) = I+e(ωt-jβz) + I+e(ωt+jβz) =  
V+
Zo

  ej(ωt-βz) - 
V-
Zo

  ej(ωt+βz) 

 
where the minus sign reflects the fact that the magnetic field, and hence the current, of the 
negative-going propagation is reversed compared to that of a positive-going wave.  If both 
waves exist, the instantaneous voltage or current as function of location is the sum of voltages or 
currents of both waves.  The characteristic impedance Zo is the ratio of voltage to current of 
either wave independently, but not necessarily their sum. 
 
 
Transmission Line Parameters 
 
If we consider an infinite lossless transmission line, we can determine the inductance L and 
capacitance C per unit length from geometric field considerations.  The three physical 
embodiments that are of interest are the two-wire transmission line, the coaxial transmission and 
the microstrip transmission line (a simple parallel-plate approximation). 
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Parameter Two-wire Coaxial Microstrip 

L 
µ
p

   ln (D/a) 
µ

2p
   ln(b/a) µT/W 

C 
p ε

ln(D/a)
  

2p ε
ln(b/a)

  εW/T 

 
In this table, D and a are the center-to-center spacing and wire radius of the two-wire line, b 
and a are the outer and inner radius of the coaxial line and T and W are the dielectric thickness 
and conductor width of the microstrip line.  For two-wire line, the expressions include the 
approximation cosh-1 (D/2a) ˜  ln(D/a) for D/2a >> 1. 
 
If we solve for Zo of coaxial and microstrip line, we have 
 

Zo = 
377

2p εr
  ln(b/a) for coaxial line (note use of ln and log10 in different references), and  

 

Zo ˜   
377

εr
   T/W for microstrip line, ignoring fringing fields. 

 
For microstrip, more accurate approximations available in the literature, and there is also a 
simple Macintosh program used in EE344 Lab that calculates Zo given εr , T and W. 
 

a

b

Coaxial Line

W

Microstrip

T

a
D

Parallel Wire Line
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Matched Load 
 
If the transmission is uniform and infinite, the wave in the +z direction will continue indefinitely 
and never return in the -z direction.   
 

+z

Infinite Transmission Line

Zo

 
If the uniform transmission line is truncated and connected instead to a lumped resistive load RL 
= Zo, the entire +z wave is dissipated in the load, which has the same effect as if an infinite line 
of characteristic impedance Zo were attached at the same point.  This matched impedance 
condition is a unique situation in which all the power of the +z wave is delivered to the load just 
as if it were an infinite transmission line, with no reflected waves generated in the -z direction. 

+z

Matched Termination Same as Infinite Line

Z = ZoZo

 
Boundary conditions at a matched load are the same as for the infinite transmission line. 
 
 
Transmission Line Discontinuities and Load Impedances 
 
If the wave on a transmission line of characteristic impedance Zo arrives at a boundary with 
different Zo, or at a discontinuity, lumped load or termination of Z ? Zo, the single wave moving 
in the +z direction cannot simultaneously satisfy the boundary conditions relating V(z) to I(z) on 
both sides of the boundary.  On one side of the boundary V(z)/I(z) = V+/I+ = Zo and on the 
other side V(z)/I(z) = (V++V-)/(I+-I-) = ZL.  As in the case for a plane 
 

+z

Mismatched Load Creates Reflected Wave

Z ° Z o-zZo
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wave reflecting from a dielectric or conducting boundary, transmitted and reflected waves are 
required to satisfy all the boundary conditions2. 
 
Waves can exist traveling independently in either direction on a linear transmission line.  If a 
wave in the -z direction is formed by a complete or partial reflection of the +z wave by some 
discontinuity such as a lumped load of Z? Zo, the two waves are by definition coherent and an 
interference pattern will exist. 
 
Even though the waves are traveling in opposite directions, the interference pattern will be 
stationary with respect to the point of reflection, and will thus be a standing wave such as may 
be found on the strings of musical instrument (of course, these are also defined by a wave 
equation).  The standing wave interference pattern is present both in the resulting V(z) and I(z). 
 
 
Visualization of Standing Waves 
 
The following set of graphs show the development of the reflected wave, beginning with an 
initially advancing incident wave moving to the reader's right, which is just about to reach the 
load point of reflection.  For these graphs, Zo=50?  and ZL=100? . 
 

 
In the next graph, the incident wave has reached the point of reflection, and the reflected wave 
can be seen to be moving back to the reader's left.  In this picture, the waveforms add to a 
greater magnitude. 
 

                                                 
2  Pozar, D., Microwave Engineering, 2nd Ed., J. Wiley, 1998, Ch 2 
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The reflected wave advances further to the left.  In this picture, the waves are subtracting. 
 

 
Once the reflected wave has reached steady state and moved off the left of the picture, we can 
look at the envelope of the combined waveforms.  We see that, being coherent, they interfere 
and form a standing wave, with the voltage maximum at the point of the mismatched load 
ZL=200? . 
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Using the voltmeter function of the software, we can measure the peak as 3.36 V, and in the 
next picture... 
 

 
 ...the minimum as 1.72 V.  Hence the ratio of peak to minimum is 3.36/1.72˜2, which is the 
SWR, the standing wave ratio.  This is real number, and does not vary with location on the line. 
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The Complex Reflection Coefficient Γ 
 
We can express the total voltage and current resulting from waves traveling in both directions: 
 
V(z) = V+ej(ωt-βz)+V-ej(ωt+βz), and 
 

I(z) =   
V+
Zo

 ej(ωt-βz) - 
V-
Zo

 ej(ωt+βz). 

 
A mismatched load may be either a lumped impedance or an infinite transmission line of a 
different Zo.  If we consider a complex load impedance ZL terminating a transmission line Zo, 
the magnitude of the -z wave is related to that of the +z wave at the termination by a complex 
quantity defined as the reflection coefficient ΓL, defined such that  
 
V- = ΓLV+, where 
 

ΓL = 
V-
V+

  = 
-I-
I+

  = |ΓL|ejθ  = ρ  ejθ  = ρ/θ  

 
The relationship between the incident wave, the reflected wave and the transmitted wave arising 
from such a discontinuity such as a lumped load is expressed in terms of the reflection 
coefficient, so that the reflected wave voltage phasor at the point of reflection is 
 
V- = ΓLV+ and 
 
VL = V++V- = V+(1+ΓL ).  This is shown in vector form here below left. 
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If we normalize to v+ = 1, then v- = ΓL and vL = 1+ ΓL .  This is shown below right. 
 

V + 

V -  =  Γ V + 
V L  = (1+ Γ )V + 

 

 

1 

Γ 
1+ Γ 

θ 

 
Now consider what happens if we move a distance -z along the transmission line (in the -z 
direction, away from the load and toward the generator).  At this point we have 
V(d) = 1+Γ(z) = 1+ΓL e-j2βz = 1+|Γ| ej(θ-2βz), shown in vector form below left. 
 

 
 
 
 

θ-2 βz

1

Γ
1+ Γ

 

1
vmin

vmax

θ-2 βz

1

Γ
1+ Γ

 
 
If we inspect what happens to V(z) as we vary z, we can see from the figure below right that 
V(z) varies from a maximum of 1+|ΓL| to a minimum of 1-|ΓL|, and that the distance between 
minima or between maxima is 2βz = 2p, which occurs every λ/2.  Also, the distance from a 
minimum to a maximum is λ/4. 
 
This particular form of polar presentation has the advantage of containing all possible values of Γ 
within the circle |Γ| = 1, and the vector Γ is defined everywhere on a lossless transmission line 
by the same vector length |Γ| or ρ, with the distance to the load in wavelengths identified with 
the angle of the vector Γ. 
 
 
Standing Wave Ratio (SWR) and Return Loss 
 
We can identify the maximum and minimum voltages vmax and vmin (normalized to V+) by 
inspection of the figure above.  
 
The ratio of these magnitudes is a real number, the voltage standing wave ratio (SWR, or 
VSWR), given by 
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SWR = 
vmax
vmin

  = 
1+|ΓL|
1-|ΓL|   = 

1+ρ
1-ρ

 .  Note that this can be solved for ρ, yielding  

 

ρ  = 
SWR-1
SWR+1 , so if we know SWR we know ρ. 

 
For a matched load ρ=0, SWR =1 and the voltage on the line is just V(d) = V+ for all d; under 
such a condition the line is termed flat..  The ratio of the power in the reflected wave to that in 
the incident wave, termed the return loss, is 
 
P-
P+

  = 
|V-|2

|V+|2
   = ρ2  

 
or, expressed as a loss (a positive number) in dB 
 
RL = -10 log10 ρ2 = -20 log10 ρ . 
 
By measuring the return loss in dB, we can determine 
 

ρ  = 10RL/20 and SWR =  
1+ρ
1-ρ

 , which characterizes the degree of impedance match.  

 
In a lossless network, the transmitted power is  
 
Pt = P+ - P- = P+(1-ρ2), and the transmission loss TL is 
 
TL = -10 log10 (1-ρ2) dB. 
 
At the points of voltage minima and maxima, the impedance is a pure resistance, which makes it 
possible to evaluate Z at those points in terms of the standing wave ratio SWR. 
 
At a voltage minimum (which is also a current maximum), Z = R = Zo and 
 

Z = 
Zo

SWR  , a real quantity. 

 
At a voltage maximum (a current minimum), Z = R = Zo and 
 
Z = Zo x SWR, also a real quantity. 
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The Smith Chart3 
 
For a transmission line of characteristic impedance Zo and load impedance ZL the reflection 
coefficient ΓL is 
 

ΓL = 
ZL-Zo
ZL+Zo

   = 

ZL
Zo

 - 1

ZL
Zo

 + 1
  ; normalize ZL to Zo by defining zL such that  

 

zL =  
ZL
Zo

 .  Substituting, we have 

 

ΓL  = 
zL-1
zL+1  , and at any distance d from the load we have 

 

Γ(d) = ΓLe-2jβd = 
z(d)-1
z(d)+1 , 

 
where z = r+jx, the impedance, resistance and reactance normalized to Zo. 
 
Solving for z, we have the value of z for any measured Γ at any point d 
 

z(d) = 
1+Γ(d)
1-Γ(d)  .  This can be expressed in the very useful form 

 

Zin = Zo 
ZL + jZotanβd
Zo + jZLtanβd , the input impedance of a line of length d, Zo and load ZL. 

 
If we plot Γ on the polar plot, and overlay the circles of constant r and x, this yields the Smith 
Chart, on which we can convert from Γ to Z (or the reverse) by inspection. 
 
To see how the Smith Chart works, first consider a matched load,  Z = Zo and Γ = 0.  This 
point is at the origin of the plot, since Γ = 0 +j0.  This is plotted below left.   
 
Next, consider a transmission line terminated with an open circuit at d=0. 

                                                 
3  Smith, P. H., "Transmission line calculator", Electronics, vol. 12, pg. 29, Jan. 1939 and "An improved 
transmission-line calculator", Electronics, vol. 17, pg. 130, Jan. 1944; for an interesting biography of 
P. H. Smith see also http://www.noblepub.com/Noble/Smthbiog.html 
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Zo Z(d)

d=0d

Z(0)

 
At d=0, the plane of the open, the current is constrained to be zero, so the reflected wave 
current must equal the incident wave current and be out of phase (i.e., I- = - I+, so that  
V- =  V+).  The impedance Z(0) at this point is 8, and the reflection coefficient Γ is 
 

Γ   = 
z-1
z+1   = 1/0.  This value of Γ is plotted on the polar chart below right. 

 

Γ = 0 
r = 1

 
Matched load (Γ=0) 

Γ = 1 
r = •

 
Open circuit load (Γ=+1) 

 
Now consider a transmission line terminated with a short. 

Zo Z(d)

d=0d

Z(0)

 
At d=0, the plane of the short, the voltage is zero, so the reflected wave voltage must equal the 
incident wave voltage and be out of phase (i.e., V- = - V+).  This is the same as  
Γ = -1/0 which is Γ = 1/p.  This value of Γ is plotted on the polar chart below left. 
 

z(0) = 
1+Γ(0)
1-Γ(0)   = 

1+(-1)
1-(-1)   = 0 at this point. 
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Now consider what happens as we move back along the transmission line away from the short 
circuit load toward the generator.  In the shorted case, Γ rotates from Γ = 1/p toward 
Γ = 1/0, while |Γ| = 1.  A very short transmission line terminated with a short is inductive and 
has positive reactance Z = jωL, and in fact the entire upper hemisphere of the Γ plot is inductive 
(positive reactance).  If we consider the case of Z = jX = jZo, or z = j, Γ is 
 

Γ  = 
z-1
z+1  = 

j-1
j+1   = j = 1/p/2. 

 
Since the phase angle of Γ is -2βd, this point corresponds to moving βd = p/4, or d/λ = 1/8.  
When we have moved d = λ/4, the phase angle of Γ reaches 0.  This is plotted below right. 
Because the polar plot will become crowded with information, the vertical (j) axis of the 
preceding polar plots will not be repeated from this point of the derivation. 
 

Γ  = -1 
r = 0

 
Short circuit load (Γ=-1) 

Γ  = -1 
d = 0

Γ  = 1 
d = λ/4

Moving away from short  
toward generator

d = λ/8

Γ(d)

 
Short through arbitrary line length 

 
By the same reasoning, if we move back on the open-terminated transmission line away from 
the open toward the generator,  Γ rotates from Γ = 1/0 toward Γ = 1/-p, while |Γ| = 1.  A very 
short transmission line terminated with a open is capacitive and has negative reactance Z = 
1/jωC, and in fact this entire hemisphere of the Γ plot is capacitive (negative reactance).  When 
we have moved λ/8, the phase angle of Γ reaches -p/2, and z = -j.  When we have moved λ/4, 
the phase angle of Γ reaches -p, and z = 0.  This is plotted below left. 
 
But the fact is that any arbitrary impedance z or reflection coefficient Γ will have the same 
behavior if we move along the transmission from the point it is measured toward the generator.  
And if the impedance is measured at a point on the transmission line other than at the 
termination, we can move toward the load as well.  It is this variation only of the phase angle, 
and not the magnitude, of Γ that is plotted below right. 
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Γ = -1 
d = λ/4

Γ = 1 
d = 0

Moving away from open  
toward generator

d = λ/8

Γ(d)

 
Open through arbitrary line length 

Γ

Toward 
generator

Toward 
load

 
Only the angle of Γ changes 

 
Because 2βd, the phase angle of Γ, is twice the electrical length βd of the motion along the line, 
Γ and its corresponding impedance z repeat every λ/2.  It is the fact that Γ and z contain exactly 
the same information, but that only Γ varies gracefully as we move along a transmission line, that 
makes the polar plot of Γ, the Smith Chart, so useful. 
 
Now if we overlay circles of constant r and constant x, we can enter either g or z, can convert 
between them by inspection, and can account for changes in line length by angle only.  This is 
the Smith Chart, plotted below left. 
 
We can also add, for example, the circle for SWR = 2, for which |Γ| = 1/3, as shown on the 
right.  No matter what load impedance results in this SWR, as we move along the line at some 
point we pass through r = 0.5 and r = 2, repeating both every λ/2.  Recalling the earlier figure 
showing Vmax and Vmin, this construction demonstrates that at the voltage maxima and minima 
the impedance is real and is either z = SWR or z =1/SWR. 
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x=1

x=-1

x=0.5

x=-0.5

x=0
r=0 r=0.5 r=1 r=2

 

x=1

x=-1

x=0.5

x=-0.5

x=0
r=0 r=0.5 r=1 r=2

SWR=2

 
 
The Smith Chart has at least four benefits: 
 

1.  All possible values of Γ, hence all possible values of Z, lie within the unit circle. 
 
2.  For a given termination, the variation of Γ with transmission line position is simply a 
rotation on the chart with no change in magnitude |Γ|, and hence, no change in SWR. 
 
3.  Lines of constant R and X are uniquely defined circles on the chart, so we can input data 
in Γ format and read the result in Z format by inspection. 
 
4.  Data from a slotted line can be entered directly in terms of SWR and distance between 
minima. 

 
The Smith Chart is a mapping onto the complex Γ plane from the complex z plane.  We let 
 
Γ = u + jv and z = r + jx 
 

Γ = u + jv = 
z-1
z+1 = 

r+jx-1
r+jx+1 = 

(r-1)+jx
(r+1)+jx = 

r2-1+j2x
(r+1)2+x2 = 

r2-1
(r+1)2+x2 +j

2x
(r+1)2+x2  

 
Circles of constant Γ are concentric with the center point of the chart, which represent  
z = 1 + j0, hence Γ = 0 + j0.  Lines of constant r and variable x transform into circles passing 
through the point labeled r on the axis running from r = 0 to r = 8.  Lines of constant x and 
variable r transform into circles passing through specific points on the outer circle |Γ| = 1.  The 
Smith Chart expresses the polar form of Γ directly by inspection, the polar angle being the angle 
from the resistance axis. 
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The benefit of the Smith Chart in connection with the use of computers for transmission-line 
calculations lies in its ability to assist in visualizing transmission-line problems, even though the 
accuracy available from computation is much greater.  The Smith Chart is used so widely it 
could be considered the logo of microwave engineering.  It is found on the cover of almost 
every book on the subject. 
 
 
Transmission Lines as Reactance and Resonators 
 
On the Smith Chart, if we rotate around a full circle toward the generator (away from the load) 
to return to the same impedance, we have gone λ/2 on the transmission line.  Notice that if we 
choose a real impedance of z?1, by rotating one half circle (λ/4) we transform z to 1/z.  This 
property of a λ/4 transmission line can be used to match an impedance Z to a transmission line 
Zo by interposing between the line and the load an impedance matching λ/4 line whose 
characteristic impedance Zm = Zo2/Z.  This is known as a quarter-wave transformer.  Any odd-
multiple of λ/4 can be used at a single frequency, but the frequency sensitivity of the resulting 
match will be greater. 
 
For the λ/4 case  

zin = 1/zL or Z = 
Zo2

ZL
  

 
For the case of λ/2 we see that the impedance is the same as the load impedance.  This repeats 
every half wavelength along the line. 
 
For the case of shorted load (ZL = 0),  
 
Z = jZo tan(2pd/λ).  For the case of a short line (d/λ<<1), this can be expressed as 
 
Z ˜  jZo(2pd/λ), which is an inductive reactance. 
 
Since fλ=v, the velocity of propagation, we can say 
 
Z ˜  jZo2pfd/v. 
 
Since Z = jX = 2pfL we can write the inductance L of a short shorted line: 
 

L ˜  
Zod
v   

 
For a shorted line of length d = λ/4 or odd multiples thereof, the impedance will be high and will 
vary with frequency in exactly the same manner as a lumped parallel resonant circuit.  For 
lengths that are multiples of  λ/2, the impedance will be low and will vary in exactly manner as a 
lumped series resonant circuit. 
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For open-circuited load (ZL = 8) we have 
 

Z = 
-jZo

tan(2pd/λ) .  For the case of a short line (d/λ<<1), this can be expressed as 

 

Z = 
-jZo

(2pd/λ) , which is an inductive reactance.  As above, we can express 

 

C ˜  
v

Zod  

 
For an open line of length d = λ/4 or odd multiples thereof, the impedance will be low and will 
vary with frequency in exactly the same manner as a lumped series resonant circuit.  For lengths 
that are multiples of  λ/2, the impedance will be high and will vary in exactly manner as a lumped 
parallel resonant circuit.  The Q of such a resonator is determined by the line losses. 
 
In the more general case, the Smith Chart is quite useful to determine impedance matching 
networks using various configurations of transmission lines and lumped elements.  It is also 
possible to use multiple quarter-wave sections to provide broader band matching.  These will be 
covered in detail in the future. 
 
Here's an interesting extra problem:  Using the Smith Chart, find the line length for x = 1 (X = 
Zo) 
 
The SWR of a line can be measured by use of a slotted transmission line, arranged to probe the 
voltage as a function of position.  This method is instructive, but has been replaced by modern 
instruments that generally measure impedance directly and display the result on a Smith Chart 
display.  Direct measurement of impedance can be very precise, but the accuracy is determined 
by the accuracy with which the line length is determined from the measuring device to the point 
of measurement. 
 
Also, because the currents of the incident and reflected waves are of opposite signs, it is 
common to make a directional coupler that adds the voltage through a small capacitance 
(nondirectional) to the voltage developed on a small magnetic coupling loop (directional) to form 
a directional detector that can measure the incident and reflected wave amplitudes separately, 
permitting the direct measurement of SWR. 
 
Modern coaxial transmission lines range from miniature semirigid cables of 0.085" diameter up 
to cables that are as large as several inches in diameter.  Connectors with low reflection are an 
important element of the application of transmission lines, and time-domain reflectometry is used 
to locate and remove discontinuities that can cause reflections at certain frequencies.  Active 
devices are composed of semiconductor elements in connection with directional couplers, 
power splitters and other specialized microwave components such as filters. 
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Present microwave circuit practice is primarily based on microstrip, which is a planar conductor 
suspended on a dielectric above a conducting plate.  Because this configuration can be built with 
photolithographic techniques, it has been widely studied and applied.  The fields are not 
confined to the dielectric, and thus there are two dielectric regimes, with the result that 
microstrip is dispersive and is more complex than coaxial structures to analyze and synthesize, 
but all the considerations of waves on transmission lines apply. 
 
 
Transmission Line Losses from Resistance 
 
It is of interest to calculate the losses due to surface resistivity, in order to calculate the losses in 
a transmission line composed of good, but not perfect, conductors. 
 
Consider a bar of conducting material shown in Fig. 1, extending indefinitely in the z direction 
(into the material).  An AC source V is connected at z = 0 to the two conducting planes at x = 0 
and x = l.  Since this will give rise to only Ex, we can assume that the fields are uniform in the x-y 
plane, and waves will move in the +z direction, the depth into the conductor. 
 

b

l

x

y

z

δ s

b

l

I x

σ

V

=

 
This figure, and the derivation that follows, are based on Rizzi4. 
 
The E-field at z = 0 will be determined by 
 

Eo+ = 
V
l   and E+(z) will move toward +z in the form 

 
                                                 
4  Rizzi, P., Microwave Engineering, Prentice Hall, 1988, pg. 44ff; see also Pozar, Microwave Engineering, 
and Moreno, Microwave Transmission Design Data, Ch 4 
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E+ = Eo+ e-γz, where  
 

γ = α  + jβ = π fµσ   + j π fµσ     
 
We have defined the skin-depth δs to be 
 

δ s = 
1

π fµσ
    

 
To get to the loss resistance, we need to calculate the current Ix in the direction of the voltage V, 
which is 

Ix = 
⌡
⌠

z=0

8

⌡⌠
y=0

b

Jx dydz .  We know that 

 
Jx(z) = σEx = σEo+e-γz 
 
Integrating with respect to y simply results in the dimension b, so we are left to integrate with 
respect to z to get 
 

Ix = 
σbEo+

γ   
 
To determine Z, we take the ratio of voltage to current 
 

Z = 
V
Ix

   to yield 

 

Z = 
l

σbδ s
(1 + j) .  We're only interested in the real part, so we have 

 

Rs = 
l

σbδ s
  ohms.  Note the phase angle of Z is 45°. 

 
If we consider the case of a round conductor of radius a, we have the width b = 2pa, so the 
series resistance is 
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ε

a

b

 

Rs = 
l

σ(2pa)δ s
  ohms. 

 
Recall that the skin depth is  
 

δ s = 
1

π fµσ
 .  

 
For copper, µr = 1, so µ = 4p x 10-7 and σ = 5.8 x 10-7 s/m and the skin depth reduces to 
 

δcu = 
6.6 x 10-2

f
  meters 

At f = 109 Hz, skin depth is 2.1 x 10-3 mm, or about 80 millionths of an inch, so you can see 
that only the surface of the conductor has much effect.  Often copper or silver are plated onto a 
lower-conductivity material for microwave use.  If inadequate plating is used, the losses of the 
underlying material can have a drastic effect on transmission-line losses. 
 
Surface roughness also affects losses, since it increases the effective surface resistive path.  An 
approximation for Rs in the case of surface roughness is 
 
Rs' = Rs[1 + 2/p tan-1 1.4(? /δ s)2], where ? is the rms surface roughness. 
 
 
Losses in Coaxial Cables 
 
For coaxial cable, there are two cylinders that must be considered.  The outer is often specified 
to have radius b (not to be confused with the dummy width variable above), while the inner has 
radius a.  For such a cable, the loss resistance is the sum of the resistances of both the inner and 
outer conductors.  Physical cables are often specified in terms of diameter (a measurable) rather 
than radius, and dimensions are often stated in inches. 
 
The magnitude of a wave on a low loss transmission line can be expressed as 
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V(d) = V+e-αd 
 
If we compare V(d) to V(0), we see that  
 
V(d)
V(0)  = e-αd, and the power ratio is 

 
P(d)
P(0)  = e-2αd 

 
To express this in decibel form, the line loss in dB is the positive number 
 

Loss = 10log(e-2αd) = 
10
2.3  ln(e-2αd) = 4.343(-2αd) = 8.686αd dB per length d 

 
For the lumped-constant equivalent circuits, the parameters for a coaxial transmission line are as 
follows: 
 

Zo = 60
µr

ε r
   ln(b

a ) 

 

G = ω
2pε oε r

ln(b
a)

  tan δ , where here tan δ  = 
ωε" + σd

ωε '
  

 

R = 
1

2paδ sσ
  +  

1
2pbδ sσ

  = 
1

2pδ sσ
 (1

a + 
1
b)  

 
Loss per unit length consists of two components5, conductive and dielectric losses 
 

α  = 
R

2Zo
  + 

GZo
2   

 

α  = αc + αd = 
a+b

4pZoabδ sσ
  + 120p2ε o(ε r)3/2 f.  But since 

 

δ s = 
1

f pµrµoσ
  we can see that α will be of the form α  = k1 f  + k2f 

 
For 1/4" semirigid cable, Zo=50? , b=7x10-3 m., εr=2.1 and tanδ = 0.00015 (Teflon6),  
                                                 
5  Rizzi, P., Microwave Engineering, Prentice Hall, 1988, pg. 185 
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α  = 2.5x10-6 f  + 2.0x10-11 f  dB/meter 
 
For RG214 cable, Zo=50? , b=1x10-2 m., εr=2.3 and tanδ = 0.00031 (polyethylene),  
 
α  = 1.5x10-6 f  + 4.2x10-11 f  dB/meter 
 
Some more modern RG-8 type cables use a foam dielectric, which has a lower dielectric 
constant and loss tangent than polyethylene.  Also, the larger center conductor diameter 
required to maintain Zo = 50?  with foam dielectric results in lower resistive loss. 
 
In order to see the two components of loss, we plot α(f) vs. f on a log-log plot, which is the 
equivalent of plotting log α vs. log f. 
 
Please note the discussion of Nepers and decibels in Pozar7.  Most exponential or natural 
logarithmic ratios result naturally in answers in Nepers, which can be converted to the more 
commonly-used decibels by the conversion factor 1 Np = 8.686 dB.  Of course, keep in mind 
that power ratios are the square of voltage ratios, which gives rise to the use of  
dB = 20 log (V1/V2) for voltage ratios and dB = 10 log (P1/P2) for power ratios. 
 
 
Coaxial Line Impedance for Minimum Attenuation and Maximum Power Capacity  
 
The expression for conductive loss αc in a coaxial line, assuming equal resistivity of inner and 
outer conductors, is of the form 
 

α c = kα
(1+x)
lnx  , where x=b/a, the ratio of outer to inner radius. 

 
If we plot this expression, normalized against its minimum value, as a function of b/a, we can see 
there is a broad minimum around x=3.6, which corresponds to Zo=77 ?  for air line and Zo=51 
?  for polyethylene dielectric (ε r=2.3). 
 

The expression for breakdown voltage is of the form Vmax = kv
lnx
x  , but since Pmax=Vmax2/Zo, 

we need to consider instead the maximum power capacity, of the form 

                                                                                                                                                 
6  Reference Data for Radio Engineers, Fifth Edition, Howard W. Sams, 1968, pg. 4-28 
7  Pozar, D. M., Microwave Engineering, 2nd Ed., J. Wiley, 1998, pg. 72-73 
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Pmax=kp
lnx
x2  . 

 
If we plot this expression, normalized against its maximum value, as a function of b/a, we can 
see there is a maximum around x=1.6, which corresponds to Zo=28 ?  for air line and Zo=19 ?  
for polyethylene dielectric (ε r=2.3). 
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These curves appear in Moreno8, and interestingly, are calculated incorrectly in Rizzi9. 
 
 
Appendix I:  Reference Summary of Relationships Between Complex Z and Γ 

The input wave is V+ and I+, and the characteristic impedance Zo is defined as Zo = 
V+

I+   . 

V- = ΓV+ and I- = -ΓI+.  The total voltage V is 
 
V = V+ + V- = V+ + ΓV+ = V+(1+Γ), and the total current I is  
 
I = I+ + I- = I+ - ΓI+ = I+(1-Γ).  The ratio of V/I is the impedance Z, which is 
 

Z = 
V
I   = 

V+(1+Γ)
I+(1-Γ)

  .  Substituting 
V+

I+
  = Zo, so 

 

Z = 
V
I   = Zo 

1+Γ
1-Γ   .  Defining normalized z = 

Z
Zo

  

 

 
Z
Zo

  = z =  
1+Γ
1-Γ   , so if we know z, we know Γ and vice versa. 

 
To get z from Γ, if we define Γ = Γr + jΓi = a + jb 
 

                                                 
8  Moreno, T., Microwave Transmission Design Data, Dover, 1958, pg. 64 
9  Rizzi, P., Microwave Engineering Passive Circuits, Prentice Hall, 1988, pg. 189-190 
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z = 
1+a+jb
1-a-jb   = 

[(1+a)+jb][(1-a)+jb]
[(1-a)-jb][(1-a)+jb]   = 

(1+a)(1-a)-b2+j[b(1-a)+b(1+a)]
(1-a)2+b2   

 

z = 
1-a2-b2 +j2b

(1-a)2+b2
  , so 

 

r = 
1-a2-b2

(1-a)2+b2  = 
1-Γr2-Γi2

(1-Γr)2+Γi2
   and 

 

x = 
2b

(1-a)2+b2  = 
2Γi

(1-Γr)2+Γi2
  

 
To get Γ if we know z, solving for Γ, 
 

z =  
1+Γ
1-Γ    

 
(1-Γ)z = 1+Γ 
 
z - zΓ = 1+Γ 
 
z-1 = zΓ+ Γ = (z+1)Γ, so 
 

Γ = 
z-1
z+1  .  The magnitude |Γ| = ρ of the reflection coefficient Γ is determined by 

 

ΓΓ* = ρ 2 = 
(z-1)(z*-1)
(z+1)(z*+1)  = 

(r-1+jx)(r-1-jx)
(r+1+jx)(r+1-jx)  = 

(r-1)2+x2

(r+1)2+x2  , so   

 

|Γ| = ρ  = 
(r-1)2+x2

(r+1)2+x2  .  We can determine SWR from ρ by 

 

SWR = 
1+ρ
1-ρ   .  If we know ρ we know SWR and vice versa.  Solving for ρ, 

 

ρ  =  
SWR-1
SWR+1  . 

 

If x = 0, ρ = 
r-1
r+1   and for r = 1, SWR = r; for r = 1, SWR = 

1
r   . 

 
Consider a transmission line with arbitrary mismatched complex load establishing a given SWR.  
At the points of minimum and maximum voltage (and hence, minimum and maximum impedance) 
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on the transmission line, the impedance is real and is related to the SWR by the simple 
relationships 
 
rmax = SWR, or Rmax = SWR x Zo.  
 

rmin = 
1

SWR  , or Rmin =  
Zo

SWR  . 

 
The numerical fraction of power reflected at an arbitrary impedance defined by ρ is 
 
RL = ρ 2 and the numerical fraction of power transmitted is 
 
TL = τ2 = (1 - ρ 2). 
 
For example:  SWR = 2, ρ2 = 0.11 (-12.3 dB) and τ2 = 0.89 (-0.26 dB). 
 
Defining z = r + jx, we can determine Γ from z by 
 

Γ =  
z-1
z+1  = 

r-1+jx
r+1+jx   = 

(r-1+jx)(r+1-jx)
(r+1+jx)(r+1-jx)  = 

(r-1)(r+1)+x2`+jx(r+1-r+1)
(r+1)2+x2    

 

Γ =  
r2-1+x2+jx(2)

(r+1)2+x2   . 

 
The real part of Γ = Γr + jΓi is 
 

Γr =  
r2+x2-1

(r+1)2+x2   and the imaginary part of Γ is 

 

Γi =  
j2x

(r+1)2+x2  .  These relationships can be used to create a Smith chart plot of Γ. 

 


