Convolution Representation of Linear Time-Invariant Continuous - Time Systems

Impulse Response

Recall the definition of an impulse function:

$$\delta(t) = 0 , t \neq 0$$
$$\int \delta(\lambda) d\lambda = 1 .$$

The impulse response is,

$$h(t) = \delta(t)$$
.

For a causal system, h(t) = 0 for all t < 0.

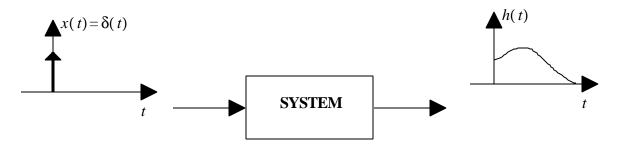


Figure 1: System impulse response.

If x(t) is a causal function (x(t) = 0 for all t < 0), by the sifting property,

$$x(t) = \int_{0^{-}}^{\infty} x(\lambda) \delta(t-\lambda) d\lambda$$

The output is,

$$y(t) = x(t) * h(t) , t \ge 0$$
$$= \int_{0}^{\infty} x(\lambda) h(t-\lambda) d\lambda$$

which is the convolution representation.

Therefore,

$$x(t)^*v(t) = \begin{cases} 0, t < 0\\ \int_0^t x(\lambda)v(t-\lambda)d\lambda , t > 0 \end{cases}$$

The integral exists if x(t) and v(t) are integrable. That is,

$$\int_{0}^{t} |x(\lambda)| d\lambda < \infty$$
$$\int_{0}^{t} |v(\lambda)| d\lambda < \infty \quad , t > 0.$$

The following steps are recommended when performing convolutions of two functions x(t) and v(t).

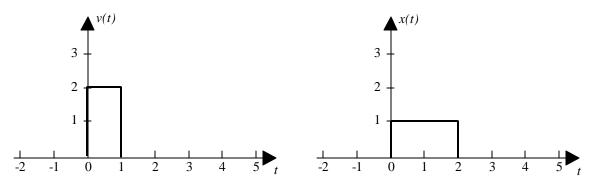
- Step 1. Graph x(l) and v(-l) (or vise-versa) as functions of l. That is, fold v(l) about the vertical axis.
- Step 2. Upon folding v(I), denote the point where I = 0 as t. All other points of v(-I) are relative to the reference point t. Remember, we're now in the I-axis.
- Step 3. Define an interval for which the product x(l)v(t-l) has the same analytical form (e.g. from t = 0 to t = 1).
- Step 4. Integrate the product x(I)v(t-I) as a function of I over the integral defined in Step 3.

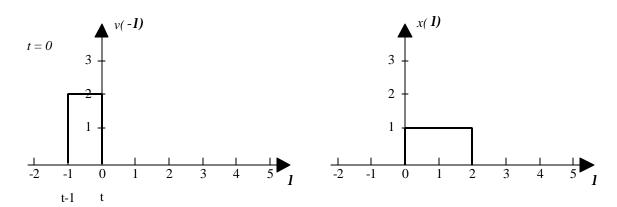
Step 5. Repeat Steps 3 and 4 as many times as necessary until x(I)*v(t) is computed for all t > 0.

EXAMPLE

Convolve the following functions:

$$x(t) = \Pi\left(\frac{t-1}{2}\right)$$
$$v(t) = 2\Pi\left(t-\frac{1}{2}\right)$$

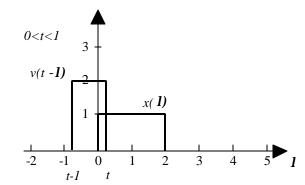




Choose to flip v(t) about the y-axis. This will then be the convolution at t = 0.

The first region of integration is t < 0 for which no overlapping area exists. We construct a table as follows:

Time shift , <i>t</i> Region of Overlap	<i>l</i> lower limit of integration	<i>l</i> upper limit of integration	Area of Overlap (Integral)
t < 0			0

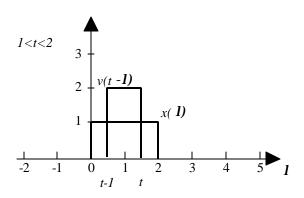


For ease of viewing the "overlap" intervals, the two functions are drawn on the same axes:

The function $v(t - \mathbf{l})$ slides over the function $x(\mathbf{l})$. The second region region of overlap and function to be integrated is $0 \le t < 1$ with the lower limit of the overlapping area determined by $x(\mathbf{l})$ and the upper limit *t* of the area is determined by $v(t - \mathbf{l})$.

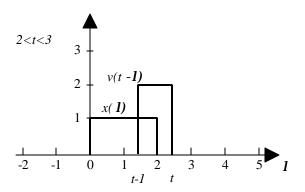
Time shift , <i>t</i> Region of Overlap	<i>I</i> lower limit of integration	<i>l</i> upper limit of integration	Area of Overlap (Integral)
<i>t</i> < 0			0
$0 \le t < 1$	0	t	$\int_{\lambda lower}^{\lambda upper} (2)(1) d\lambda$

The third region of overlap is $1 \le t < 2$ as shown below. There is complete overlap of the two areas. Therefore, the integration limit of the overlap area are from t - 1 to t defined by v(t - 1) in the region $1 \le t < 2$.



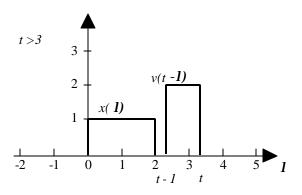
Time shift , t	<i>l</i> lower limit	<i>I</i> upper limit	Area of Overlap
Region of Overlap	of integration	of integration	(Integral)
<i>t</i> < 0			0
$0 \le t < 1$	0	t	$\int_{\lambda lower}^{\lambda upper} (2)(1) d\lambda$
1≤ <i>t</i> < 2	<i>t</i> – 1	t	$\int_{\lambda lower}^{\lambda upper} (2)(1) d\lambda$

The fourth region of overlap is $2 \le t < 3$ over which the upper limit of integration is 2 as defined by x(l) and the lower limit is t - 1 as defined by v(t - l).



Time shift, t	<i>l</i> lower limit	1 upper limit	Area of Overlap
Region of Overlap	of integration	of integration	(Integral)
<i>t</i> < 0			0
$0 \le t < 1$	0	t	$\int_{\lambda lower}^{\lambda upper} (2)(1) d\lambda$
1≤ <i>t</i> < 2	<i>t</i> – 1	t	$\int_{\lambda lower}^{\lambda upper} (2)(1) d\lambda$
$2 \le t < 3$	<i>t</i> – 1	2	$\int_{\lambda lower}^{\lambda upper} (2)(1) d\lambda$

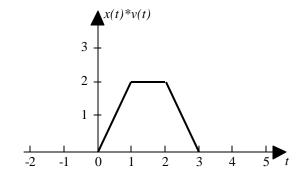
The last region is trivial in that there is no overlap between the two functions. The resultant area of overlap is 0.



Time shift , <i>t</i> Region of Overlap	<i>l</i> lower limit of integration	<i>l</i> upper limit of integration	Area of Overlap (Integral)
t < 0			0
$0 \le t < 1$	0	t	$\int_{\lambda lower}^{\lambda upper} (2)(1) d\lambda$
$1 \le t < 2$	<i>t</i> – 1	t	$\int_{\lambda lower}^{\lambda upper} (2)(1) d\lambda$
2 ≤ <i>t</i> < 3	<i>t</i> – 1	2	$\int_{\lambda lower}^{\lambda upper} (2)(1) d\lambda$
$t \ge 3$			0

The result of the convolution is:

$$x(t)*v(t) = \begin{cases} 0 & , t < 0 \\ 2t & , 0 \le t < 1 \\ 2 & , 1 \le t < 2 \\ -2t + 6 & , 2 \le t < 3 \\ 0 & , t \ge 3 \end{cases}$$



Result of the convolution.