Myoglobin/Hemoglobin O2 Binding and Allosteric Properties of Hemoglobin

 Hemoglobin binds and transports H⁺, O₂ and CO₂ in an allosteric manner
Allosteric interaction - a regulatory mechanism where a small molecule (effector) binds and alters an enzymes activity

'globin Function

 O_2 does not easily diffuse in muscle and O_2 is toxic to biological systems, so living systems have developed a way around this.

Physiological roles of:

- Myoglobin
 - Transports O₂ in rapidly respiring muscle
 - Monomer single unit
 - Store of O₂ in muscle high affinity for O₂
 - Diving animals have large concentration of myoglobin to keep O₂ supplied to muscles
 - Hemoglobin
 - Found in red blood cells
 - Carries O2 from lungs to tissues and removes CO2 and H+ from blood to lungs
 - Lower affinity for O₂ than myoglobin
 - Tetrameter two sets of similar units $(\alpha_2\beta_2)$

Myo/Hemo-globin

- Hemoglobin and myoglobin are oxygen- transport and oxygen-storage proteins, respectively
- Myoglobin is monomeric; hemoglobin is tetrameric
 - Mb: 153 aa, 17,200 MW
 - Hb: two α chains of 141 residues, 2 β chains of 146 residues

X-ray crystallography of myoglobin

- mostly α helix (proline near end of each helix WHY?)
- very small due to the folding
- hydrophobic residues oriented towards the interior of the protein
- only polar aas inside are 2 histidines

Structure of heme prosthetic group

Protoporphyrin ring w/ iron = heme Oxygenation changes state of Fe

Purple to red color of blood, Fe⁺³ - brown

Oxidation of Fe^{+2} destroys biological activity of myoglobin Physical barrier of protein is to maintain oxidation state of Fe^{+2}

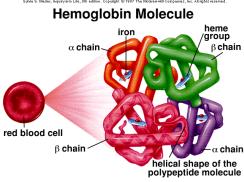
Propionate chain orients heme

Mb and Hb use heme to bind Fe^{2+} / Fe^{2+} is coordinated by His F8

- Iron interacts with six ligands in Hb and Mb
- Four of these are the N atoms of the porphyrin
- A fifth ligand is donated by the imidazole side chain of amino acid residue His F8
- When Mb or Hb bind oxygen, the O $_2$ molecule adds to the heme iron as the sixth ligand $\$
- The O₂ molecule is tilted relative to a perpendicular to the heme plane (IMPORTANT FOR LATER!)

Structure of heme prosthetic group

- heme wedged between hydrophobic pocket of helix E & F
- Iron is out of plane due to his 8 bond
- distal vs. proximal histidines
- 3 states of 6th coordinate site


free vs. bound heme – role of apoprotein

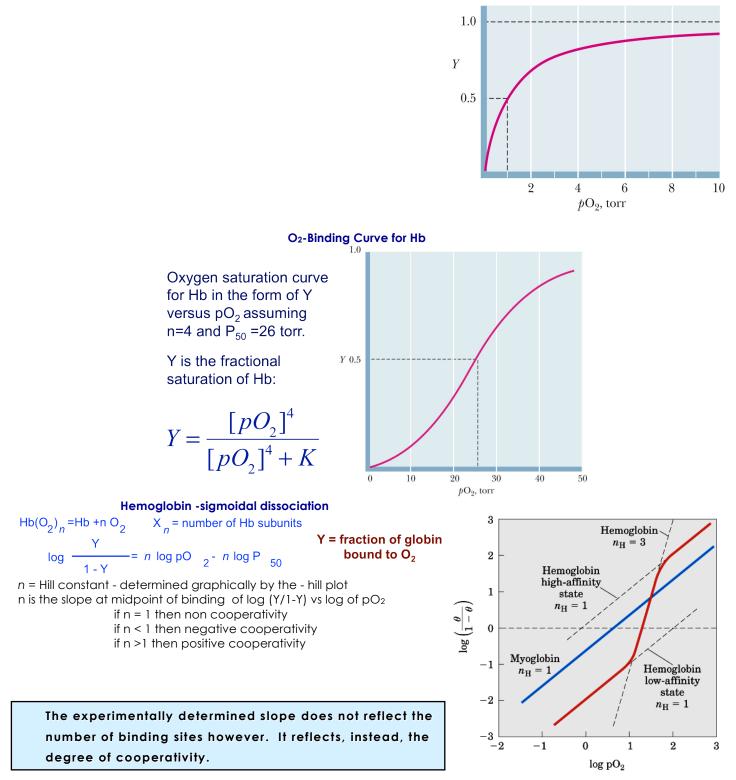
- Globin binding restricts heme dimers from forming
- Helps keep iron reduced
- Stabilizes transition state (O₂ binding)

CO, NO and H₂S binding - poison of O_2 binding bind with greater affinity than O_2

His E 7 decreases affinity of ligands (CO and O_2) for Fe⁺²

	Form	Oxidation	Fe in plane of heme	6 th Coordinate State	Distal His
--	------	-----------	---------------------	----------------------------------	------------

GEIS


H₂C

оос-сн,-сн,

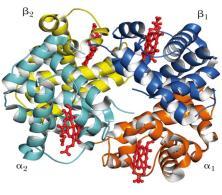
D

сн,-сн,-соо

Myoglobin O2 affinity

So how does this relate the biological effect of O2 affinity of Hb?

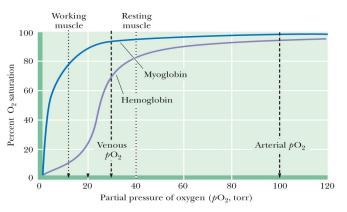
• look at pO2 of alveoli vs. metabolically active tissue


•What if oxygen dissociation were hyperbolic rather than sigmoidal?

Myoglobin and Hemoglobin

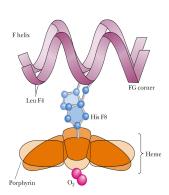
- •Hemoglobin is structurally related to myoglobin
- •very different primary sequence about an 18% homology in the primary sequence
- •2 alpha subunits and 2 beta subunits
- •in adults there are very small amount of alpha 2delta 2 hemoglobin

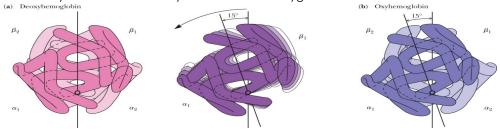
Myoglobin (Mb)



Hemoglobin (Hb)

Cooperative Binding of Oxygen Influences Hemoglobin Function


- Mb, an oxygen-storage protein, has a greater affinity for oxygen at all oxygen pressures
- Hb is different it must bind oxygen in lungs and release it in capillaries
- Hb becomes saturated with O2 in the lungs, where the partial pressure of O2 is about 100 torr
- In capillaries, pO₂ is about 40 torr, and oxygen is released from Hb
- The binding of O₂ to Hb is cooperative binding of oxygen to the first subunit makes binding to the other subunits more favorable

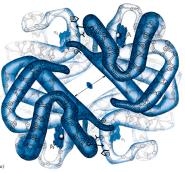

Impact of differences of O₂ binding affinity – allosterism

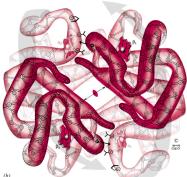
Oxygen Binding by Hb Induces a Quaternary Structure Change

- When deoxy-Hb crystals are exposed to oxygen, they shatter. Evidence of a large-scale structural change
- One alpha-beta pair moves relative to the other by 15 degrees upon oxygen binding
- This massive change is induced by movement of Fe by 0.039 nm when oxygen binds

Fe²⁺ Movement by Less Than 0.04 nm Induces the Conformation Change in Hb

In deoxy-Hb, the iron atom lies out of the heme plane by about 0.06 nm Upon O_2 binding, the Fe²⁺ atom moves about 0.039 nm closer to the plane of the heme As Fe²⁺ moves, it draas His F8 and the F helix with it


This change is transmitted to the subunit interfaces, where conformation changes lead to the rupture of salt bridges


3D structure of hemoglobin and myoglobin

•a1-b1 units have 35 interactions •a 1-b 2 units have 19 interaction sites •similar units have few polar contacts •the two a and two b subunits face each other through aqueous channels

•Binding of oxygen dramatically alters the interactions and brings about a twisting of the two halves (alpha beta pairs)

•Much of the quaternary changes takes place in the salt bonds between the C terminals of all four chains

Figure

Figure o

•There are two general structural states - the deoxy or T form and the oxy or R form.

One type of interactions shift is the polar bonds between the alpha 1 and the beta 2 subunits.

So... to recap!

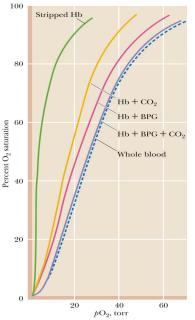
Oxygen binding shifts quaternary structure at long distances

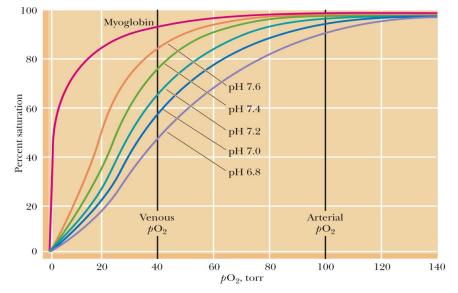
- binding of O₂ ligand at 6th coordinate position pulls Fe into heme
- moves proximal histadine (F8) and the alpha helix it is attached to.
- shift in the helix is transmitted throughout of molecule
- Impacts interactions between Hb subunits.
- Myoglobin? No interactions
- Thus one has allosteric potential while the other doesn't

The Physiological Significance of the Hb:O₂ Interaction

Hb must be able to bind oxygen in the lungs

Hb must be able to release oxygen in capillaries


- If Hb behaved like Mb, very little oxygen would be released in capillaries
- The sigmoid, cooperative oxygen-binding curve of Hb makes its physiological actions possible!


Bohr Effect

H⁺ Promotes Dissociation of Oxygen from Hemoglobin

The effect of H⁺ is particularly important Deoxy-Hb has a higher affinity for H⁺ than oxy-Hb

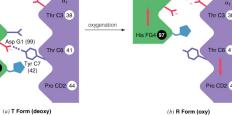
> Thus, as pH decreases, dissociation of O from hemoglobin is enhanced

The Antagonism of O₂ Binding by H⁺ is Termed the Bohr Effect

The effect of H⁺ on O₂ binding was discovered by Christian Bohr (the father of Neils Bohr, the atomic physicist)

- Binding of protons diminishes oxygen binding
- Binding of oxygen diminishes proton binding •
- Important physiological significance

CO₂ Also Promotes the Dissociation of O₂ from Hemoglobin


Carbon dioxide diminishes oxygen binding

Hydration of CO₂ in tissues and extremities leads to proton production:

$CO_2 + H_2O \neq H^+ + HCO_3^-$

These protons are taken up by Hb as oxygen dissociates The reverse occurs in the lungs

pH and CO₂ impact

1) In active tissues respiration, (glycolysis) results in lactic acid formation. These tissues need more O_2 . Without the H+ effect Hb would hold on to more of the O_2 . The increase [H+] induces Hb to dump 10% more of it's O_2 . 2) CO_2 reversibly binds to N term (carbamate) to remove remaining CO_2

R - NH₂ + CO₂ <-> R - NH - COO⁻ + H⁺

R is the Hb N term amide

The carbamide increases the T formation - deoxy form. The reverse occurs in the lungs. This results in 1/2 of CO2 removal from tissues.

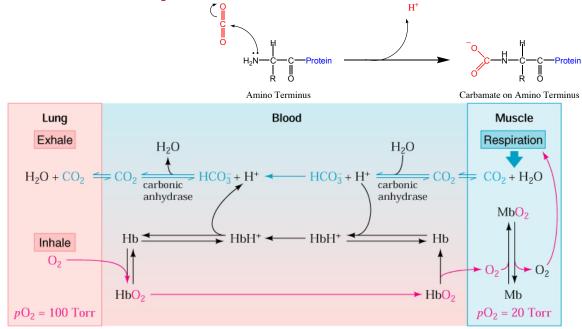
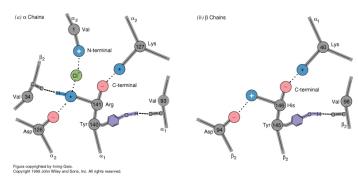



Figure 7-13 Key to Function. The roles of hemoglobin and myoglobin in transporting O_2 from the lungs to respiring tissues and CO_2 (as HCO_3^-) from the tissues to the lungs.

- The T form finds the terminals in several important H bonds and salt bridges.
- In the T form the C terminus of each subunit are "locked" into position through several hydrogen and ionic bonds.
- Shifts into the R state break these and allow an increased movement throughout the molecule.

Bohr Effect Continued

The Bohr effect is the reversible shift in Hb affinity for O_2 with changes in pH. H+ Transport (effect) - O_2 binding to Hb releases H⁺ due to conformational changes in Hb

- deoxyform (T form) brings Asp 94 close to His 146
- -the proximity of an acidic amino acid increases the pK of histidine (pKa is now above the pH) and results in H⁺ "binding" to deoxyHb
- in other words the His becomes protonated where it normally would be ionized
- increasing pH stimulates Hb to bind to O_2
- Bottom line when O₂ binds Hb, H+ is released from several amino acid's functional groups.
- When O_2 is released, the amino acids become protonized and then "picks" up a H+.

So when the H+ is high (acidic conditions) the H+ is driven onto the terminal amino acids driving it into the T conformation

Summary of the Physiological Effects of $\mathsf{H}^{\scriptscriptstyle +}$ and CO_2 on O_2 Binding by Hemoglobin

At the tissue-capillary interface, CO₂ hydration and glycolysis produce extra H⁺, promoting additional dissociation of

 $CO_2 + H_2O \xrightarrow{\text{carbonic anhydrase}} H_2CO_3 \xrightarrow{} H^+ + HCO_3^$ carbonic acid bicarbonate

 O_2 where it is needed most At the lung-artery interface, bicarbonate dehydration (required for CO_2 exhalation) consumes extra H⁺, promoting CO_2 release and O_2 binding -Purified Hb has a different O₂ affinity than in blood -26 fold decrease change in affinity

-

2,3-Bisphosphoglycerate

- In the absence of 2,3-BPG, oxygen binding to Hb follows a rectangular hyperbola!
- The sigmoid binding curve is only observed in the presence of 2,3-BPG
- Since 2,3-BPG binds at a site distant from the Fe where oxygen binds, it is called an allosteric effector

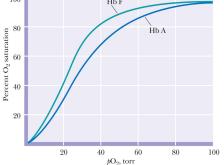
BPG Binding to Hb Has Important Physiological Significance

Where does 2,3-BPG bind?

– "Inside"

in the central cavity

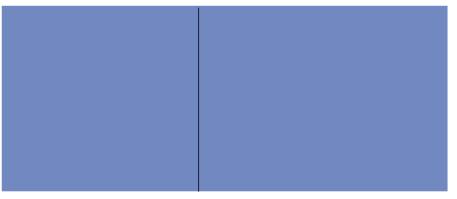
What is special about 2,3-BPG?


- Negative charges interact with 8 positive charges in the cavity: 2 Lys, 4 His, 2 N-termini
- 2,3 bisphosphoglycerate (BPG)

-Purified Hb has a different O₂ affinity than it does in blood 26 fold decrease change in affinity is due to 2,-3 diphosphoglycerate BPG

- (BPG replaced by nucleotides IHP and ATP in fish and birds)
- 1 BPG per Hb binds in central cavity of Hb
- binds preferentially to deoxy Hb
- hydrophobic bonds with Lys and salt bridge with His
- O₂ binding changes conformation and "kicks out" BPG
- change in altitude increases concentration of BPG

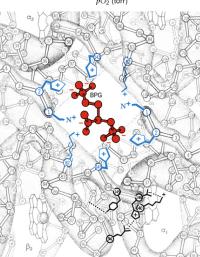
Fetal F Hb has replaced His 143 with Ser - What might the consequences be?



Expression of fetal Hb

 $z_{2}e_{2}$, $a_{2}e_{2}$ and $a_{2}g_{2}$ chains have a higher affinity for O₂ than $a_{2}b_{2}$ chains giving fetus ability to get O₂ from mother


Hemoglobin F, the hemoglobin of late fetal life is made of two a and two g subunits. The beta chain is not fully produced until a few weeks after birth



Postconceptual age (weeks) Birth Postnatal age (weeks)

Fetal Hemoglobin Has a Higher Affinity for O₂ Because it has a Lower Affinity for BPG

- The fetus depends on its mother for O_2 , but its circulatory system is entirely independent
- Gas exchange takes place across the placenta
- Fetal Hb differs from adult Hb with γ -chains in place of β -chains and thus a $\alpha_2\gamma_2$ structure
- . As a result, fetal Hb has a higher affinity for O2
- Why does fetal Hb bind O2 more tightly?
- Fetal γ-chains have Ser instead of His at aa 143 and thus lack two of the positive charges in the BPG- cavity
- BPG binds less tightly and Hb F thus looks more like Mb in its O2 binding behavior

Sickle-Cell Anemia, a Molecular Disease

One of the first "molecular" diseases found - sickle cell anemia

sickle cell - blood cell is elongated , mis-shaped (sickle)

- occurs at low O₂ concentration
- caused by hemoglobin aggregates
- inflammation in capillaries and pain
- red blood cells break down anemia
- between 10% of American blacks and 25% of African blacks are heterozygous for sickle cell anemia
- homozygous usually do not survive into adult hood
- heterozygous individuals usually have no problem except when in severe oxygen deprivation

Sickle-Cell Anemia is a Molecular Disease

A single amino acid substitution in the β-chains of Hb causes sickle-cell anemia
Glu at position 6 of the β-chains is replaced by Val

As a result, Hb S molecules aggregate into long, chainlike polymeric structures

Single amino acid (point mutation) HbS vs. HbA changes structure

- sickle cell b chains have a valine in place of glutamate
- leads to more Hb S (sickle cell) has 2 more + charges than normal hemoglobin
- Glu -Val occurs on exterior of protein does not change O₂ dissociation/allosteric properties of protein

Sickle-Cell Anemia is a Molecular Disease

The polymerization of Hb S molecules arises because Val replaces His on the surface of β -chains. The "block" extending from Hb S below represents the Val side chains. These can insert into hydrophobic pockets in neighboring Hb S molecules.

Deoxy HbS precipitates

- oxyHb phenylalanine b85 and leucine b88 interior
- phe and leu shift to exterior
- create a sticky patch with valine (hydrophobic bonding)
- nucleation (cluster of aggregate) occurs logarithmically
- homozygous 1000 times faster than heterozygous
- that means mixed genes can re-oxygenate faster than polymerization can occur

How can such a disease occur?

- highest concentration of gene mutation occurs where there is high incidence of malaria
- heterozygous individuals survive this disease better than those without
- malaria causing parasite lives in red blood cells during part of its life cycle
- partial sickling must interrupt life cycle of malaria parasite

Methemoglobinemia - instead of aggregation, mutation leads to changes in O2 affinity

- Hb Boston form: distal his replaced with tyrosine stabilizes Fe3⁺ state
 - heme cannot bind O2, T form is favored

Hb Milwaukee Val near distal His site is mutated to a glutamate

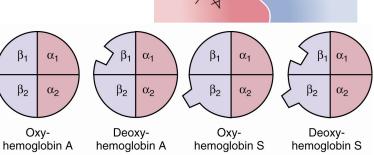
- This allows tight association with O2. Causes oxidation of iron
- blood is brown (Fe+3 state)
- only heterozygous individuals survive

Thalassemias - alpha thalassemia, missing alpha chain - usually due to way the DNA mutation in promoter

- heterozygous are usually asymptotic (show no signs)
- homozygous need blood transfusion to live
- delta chains are very important here

Hemoglobin and Nitric Oxide

Nitric oxide (NO ·) is a simple gaseous molecule that acts as a neurotransmitter and as a second messenger in signal transduction


NO · is a high-affinity ligand for Hb, binding to the heme iron 10,000 times more tightly than O2

So why is NO · not bound instantaneously to Hb, preventing its physiological effects?

NO \cdot reacts with the –SH of Cys^93 β , forming an S-nitroso derivative:

The S-nitroso group is in equilibrium with other S-nitroso compounds formed by reaction of nitric oxide with smallmolecule thiols such as free Cys or glutathione:

These small-molecule thiols transfer NO · from erythrocytes to endothelial receptors, where it exerts its physiological effects

Phe

Val 6

Leu 88

85