

Most, if not all cancers have acquired same set of functional capabilities during their development, albeit through various mechanisms Invasion and Metastasis most heterogeneous and poorly understood | Sustained angiogenesis | Sustained

Moving Out

90% of Patient deaths are due to non-primary tumors

- Size of all tumors are difficult to detect
- Brain vs peritoneal/pleural space
 Compromising vital functions –
- block passage of product, lung function, bone break

 Seed and soil metastasis form
- micrometastasis in distal sites, fertile ground allows tumors to thrive
 - Breast -> brain, liver bones and lungs
 - Colon -> liver
 - Prostate -> bones

disease from non-Hodgkin;s

- Lack of contact (many tumor cells maintain some requirement), loss of stromal cell factors, sheer factors and size of vessels (cancer cells > 20μM while capillaries ~3-8μM) create hostile environment for most escaping tumor cells
- · Most cells die by anoikis (form of apoptosis)
- Circulating tumor cells often become trapped in lungs but many do not stay as they find through to tissue capillaries or move within tissues
- Complicating passage is many tumor cells recruit and macrophages/platelets – found as multicellular aggregate

Time to leave - Extravasation

- Several mechanisms different than leukocytes (can travel between endothelial cells by a process called diapedesis)
 - Use a similar mechanism as intravasation
 - Can proliferate to obliterate adjacent vessel wall.
 - Helped by macrophages recruited while reroute

Trapped cells (cancer and platelets) form microthrombus. Protease and mechanical reduction of endothelial cells leave capillary BM to invade. - Proliferation within the lumen allows invasion into surrounding parenchyma

- Receptor mediated attachment of cancer cell to endothelial cells induce small G proteins (Ras, Rac, Rho) to re-arrange cancer cell shape and allow protrusion and tail retraction
- Receptors also induce expression and secretion of factors (integrin) and proteases to allow for junction disassembly of endothelial cells.

- Cancer cell interaction with platelets protect tumor cells against immune lysis by natural/hunter killer cells.
- Platelets secrete factors and help recruit neutrophils which secrete pro-inflammatory cytokines and help adhesion.
- Cancer cells help the process by release of cytokines which drive endothelial retraction and extravasation by VEGEF and other factors

Driving Miss Daisy

- Cancer genomes are typically altered at multiple points (hundreds) in a single tumor
- Key somatic mutations which significantly contribute to tumor progression are "Driver Mutations" Confer growth advantage and positive selection in microenvironment
- "Passenger or Neutral Mutations" may not help tumor formation and progression and are simply carried along and the result of mutational environment (lack of repair...)
- EMT Drivers include transcription factors altering Ecadherin. (Snail, Slug, Zeb1 and Twist) and E cadherin itself

Name	Where first identified	Type of transcription factor	Cancer association
Snail (SNAI1)	mesoderm induction in Drosophila; neural crest migration in vertebrates	C2H2-type zinc finger	invasive ductal carcinoma
Slug (SNAI2)	delamination of the neural crest and early mesoderm in chicken	C2H2-type zinc finger	breast cancer cell lines, melanoma
Twist	mesoderm induction in Drosophila; emigration from neural crest	ЬНІН	various carcinomas, high-grade melanoma, neuroblastoma
Goosecoid	gastrulation in frog	paired homeodomain	various carcinomas
FOXC2	mesenchyme formation	winged helix/forkhead	basal-like breast cancer
ZEB1 (δEF1)	postgastrulation mesodermal tissue formation	2-handed zinc finger/ homeodomain	wide variety of cancers
ZEB2 (SIP1)	neurogenesis	2-handed zinc finger/ homeodomain	ovarian, breast, liver carcinomas
E12/E47 (Tcf3) ^a	associated with E-cadherin promoter	ЬНІН	gastric cancer

Colonization – the new begining

- Micrometastases colonization by small clumps of metastasizing cancer (and associated) cells
- Most foreign tissues do not contain proper mix of stromal cells/signaling factors for continued proliferation
- > 30% of breast cancer patients harbor 100-1000s of micrometastases but only half will show development of theses metastatic nascent tumors
- In mice primary tumors (1g ~10⁹ cells) seed more than 1 mil cells per day into blood/lymph but less than 5 will survive to form metastasis.

Proteases and Invasion/Metastasis