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How do glycolytic enzymes favour cancer cell proliferation
by nonmetabolic functions?
H Lincet1,2,3 and P Icard1,4

Cancer cells enhance their glycolysis, producing lactate, even in the presence of oxygen. Glycolysis is a series of ten metabolic
reactions catalysed by enzymes whose expression is most often increased in tumour cells. HKII and phosphoglucose isomerase (PGI)
have mainly an antiapoptotic effect; PGI and glyceraldehyde-3-phosphate dehydrogenase activate survival pathways (Akt and so
on); phosphofructokinase 1 and triose phosphate isomerase participate in cell cycle activation; aldolase promotes epithelial
mesenchymal transition; PKM2 enhances various nuclear effects such as transcription, stabilisation and so on. This review outlines
the multiple non-glycolytic roles of glycolytic enzymes, which are essential for promoting cancer cells' survival, proliferation,
chemoresistance and dissemination.
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INTRODUCTION
In normal tissue, the vast majority of nonproliferating differen-
tiated cells use oxidative phosphorylation (OXPHOS) for ATP
production. These cells metabolise glucose to pyruvate through
glycolysis, then oxidise this pyruvate through the tricarboxylic acid
cycle, generating ATP through ATP synthase, the rate of the
production being coupled with proton transport and on oxygen
respiration.1 In contrast, rapidly proliferating tumour cells con-
sume glucose at a higher rate compared to normal cells and part
of their glucose carbon is converted into lactate, even in oxygen-
rich conditions; this is referred to as the ‘Warburg effect’ or
‘aerobic glycolysis’. For ATP production, cancer cells may enhance
the β-oxidation of lipids, the oxidative use of glutamine and/or
lactate.2–4 Furthermore, amino-acid uptake (alanine, aspartate,
methionine and so on) is essential to replenish the tricarboxylic
acid.5 The Warburg effect seems to be a consequence to
uncoupling between glycolysis and tricarboxylic acid-OXPHOS
due to pyruvate dehydrogenase inactivation and lactate dehy-
drogenase activation, in relation to HIF-1 and c-Myc activation.6,7

Since 2011, it is widely acknowledged that metabolic reprogram-
ming is a hallmark of cancer,8 providing tumour cells with all the
metabolites (such as serine), derived from glucose and glutamine
metabolism,9,10 they need for growth and proliferation, such as
nucleotides, macromolecules, lipids and also NAD+, NADPH,H+

cofactors. Currently, a large body of evidence supports the idea
that activated oncogenes, inactivated tumour suppressors and
transcriptional factors are linked directly or indirectly to the
cellular metabolic reprogramming, establishing a relationship
between genetic alterations and glucose metabolic pheno-
type.5,6,11–13 The glycolytic pathway is a series of ten metabolic
reactions catalysed by multiple enzymes or enzyme complexes
whose expression is most often increased in tumour cells. The aim
of this review is to emphasise their non-glycolytic functions such
as their nuclear role (DNA repair, transcription and so on) and their

implications in many other functions, such as apoptosis,
detoxification, cell cycle control, signalling pathways and so on.

Hexokinases
In the cytosol, glucose (or fructose) is phosphorylated by
hexokinases (HK) (glucose kinase or fructose kinase) to glucose-
6-phosphate (G6P). HK catalye the first irreversible reaction of
glycolysis. Among the four mammalian HK isoenzymes (HKI to
HKIV), HKII is highly expressed in many cancers.14,15 This
predominant isoform has no regulatory site,16 a characteristic
favouring resistance to the Pasteur effect. HKII involved in the
diversion of glucose towards glycolysis or pentose phosphate
pathway (PPP) that sustain anabolic pathways such as glycerol and
serine or nucleotide biosynthesis, respectively.17 Moreover, HKII is
bound to outer mitochondrial membrane porins (voltage-gated
anion channels) to facilitate access for newly synthesised ATP for
phosphorylation glucose.18 This binding of HKII to the mitochon-
dria decreases the negative feedback of G6P on HK, increasing
glucose metabolism via glycolysis in tumours.19

The interaction of HKII with the voltage-gated anion channels
depends on glucose uptake. Glucose deprivation prevents this
interaction in the outer mitochondrial membrane, which modifies
mitochondrial membrane potential leading to apoptosis through
the release of apoptogenic molecules.20,21 These mechanisms
could be implied in BH3-only molecules, in particular Bad and
Bid,22–24 which may link glycolysis and apoptosis in response to
glucose uptake.25

Numerous studies indicate that HKII overexpression has a
central role in the development of cancers and is associated with
oncogenic transformation and poor prognosis.26–29 This upregula-
tion has been demonstrated to be induced by HIF-1α in certain
tumours23 and is also believed to be due to the c-Myc
oncogene.30,31 Furthermore, mRNA and protein expression levels
of HKII are regulated by microRNAs (miRs). The overexpression of
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miR-143, tumour-suppressive miRNA or anti-oncomiR, inhibits
both mRNA and protein expression of HKII, and represses
metabolism in cancer cells.32,33 In prostatic and breast tumours,
an inverse correlation has been found between miR-143 expres-
sion and HKII level, such as a decrease in miR-143 expression
linked to an increase in HKII expression.32 This miR-143 has been
found to be under indirect control of miR-155,33 which is an
oncomiR-repressing tumour suppressor gene.34

Phosphohexose isomerase (phosphoglucose isomerase, PGI)
PGI (also referred to as phosphohexose isomerase or G6P
isomerase) is a second glycolytic enzyme that catalyses the
isomerisation of G6P into fructose-6-phosphate. PGI has other
biological roles when secreted as an extracellular cytokine with
properties that include autocrine motility factor (AMF), also
referred to as PGI/AMF.35,36 Overexpressed secretion of PGI/AMF
has been observed in the serum and urine of patients with
gastrointestinal, kidney and breast cancers.36,37 PGI/AMF induces
the transformation and survival of NIH-3T3 fibroblasts,38 promotes
cell motility39 and is associated with cancer progression and
metastasis,40,41 notably through ERK activation that produces IL-8
in response to PGI/AMF.42 Moreover, PGI/AMF inhibits expression
of Apaf-1 and caspase-9 genes, and indirectly regulates the
formation of the apoptosome that induces tumour resistance to
apoptosis. The relationship between PGI/AMF and inhibition of
Apaf-1 and caspase-9 expressions remains to be studied43

(Figure 1a). PGI/AMF could also reduce apoptosis through PI3K/
Akt signalling pathway activation. This action seems a conse-
quence of an interaction between PGI/AMF and HER2, inducing

HER2 phosphorylation. This pathway activates phosphoinositide-
3-kinase and mitogen-activated protein kinase signalling leading
Akt activation.38,44 This activation is generally associated with
increased tumour progression, tumour cell invasiveness and antia-
poptosis.45 Downregulation of PGI/AMF decreases the expression
of Akt and Erk1/246 and induces epithelial–mesenchymal transi-
tion (EMT), hence reducing malignancy.47 Thus, PGI/AMF is
implied in the regulation of EMT, a phenomenon that is associated
with acquisition of invasive phenotype by cancer cells.48 PGI/AMF
upregulates the NF-κB transcription factor and ZNF217 factor,
which contribute towards the induction of EMT, and down-
regulates the mi-R-200 family, which is involved in the inhibition
of this process49,50 (Figure 1a).

Phosphofructokinase 1 (PFK1)
PFK1 converts fructose-6-phosphate into fructose-1,6-bispho-
sphate. This is the second irreversible reaction of the glycolytic
pathway and a major glycolysis checkpoint.11 PFK1 is stimulated
by ADP/AMP, whereas citrate, long-chain fatty acids, lactate and
ATP act as strong inhibitors, providing negative feedback for
glycolytic rate,51,52 (for a review, refer to Ros and Schulze53).
Moreover, in response to hypoxia, the O-linked β-N-acetylgluco-
samine (O-GlcNAc) post-translational modification is dynamically
induced at Ser529 of PFK1, hence inhibiting its activity.54 This
regulation reorients a great share of glucose flux through the PPP,
and results in an increase in NADPH, which is an essential cofactor
for lipogenesis and also contributes towards GSH, reducing power
regeneration and conferring cancer cells with a growth advantage.
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Figure 1. Schematic representation of non-glycolytic functions of PGI and aldolase A (ALDO A). (a) PGI acts as cytokine outside the cell with
properties of the autocrine motility factor (AMF) referred to as PGI/AMF. It indirectly regulates expression of Apaf-1 and caspase-9 genes,
blocking the formation of apoptosome. PGI/AMF could induce cell proliferation and reduce apoptosis through PI3K/Akt and Erk1/2 pathways.
Expression of PGI/AMF is implied in the epithelial-to-mesenchymal transition (EMT) through the upregulation of NF-κB factor and ZNF217
factor. (b) ALDO A may be phosphorylated by Akt or Erk 2 kinases then may translocate in the nucleus. In this compartment, ALDO A is
involved in the regulation of transcription of genes implied in cell cycle progression, but also in the stabilisation of transcripts by linking with
AT-rich DNA sequences, and in the protection of DNA in response to DNA damage. In cytosol, ALDO A is implied in the EMT through
modifications in the expression of markers of this process.
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The most potent allosteric activator of PFK1 is fructose-2,6-
bisphosphate (F2,6BP), which induces PFK1 activity even in the
presence of ATP, suggesting that it could have a role in PFK1
upregulated activity in many tumours.55 The synthesis and
degradation of F2,6BP depend upon 6-phosphofructo-2-kinase
(PFK2)/F2,6BPase (PFK2), which includes both kinase and phos-
phatase activities. There are four mammalian PFKFB isoenzymes
(PFKFB 1 to 4).56 The PFKFB3 isoenzyme has the highest kinase/
phosphatase activity ratio (740/1) and thus leads to elevated
F2,6BP levels, which in turn sustain high glycolytic rates. In
contrast, it has been shown that F2,6BPase overexpression induces
a decrease in the rate of F2,6BP,thereby blocking glycolysis. F2,6BP
expression is high in a number of aggressive cancers (e.g. breast,
colon and ovarian)57 and is induced by hypoxia in cultured human
colon adenocarcinoma cells.58 PFKFB3 overexpressed activity
induces the expression of several cell cycle regulators such as
phosphatase, Cdc 25C, and cyclin D3 and represses the cell cycle
inhibitor p27, all of which contribute towards an increase in CDK1
activity.59,60

Aldolase (ALDO) and Triose phosphate isomerase (TPI)
Fructose-bisphosphate ALDO catalyzes the reversible reaction of
fructose-1,6-bisphosphate to glyceraldehyde-3-phosphate and
dihydroxyacetone phosphate. In human tissue, three ALDO
isozymes are expressed in a tissue-dependent manner: ALDO A
(mainly in muscles), ALDO B (mainly in liver) and ALDO C
(expressed in neuronal tissue).61 ALDO A is the most commonly
expressed in tumour tissue62 and is overexpressed in various
cancers such as squamous cell lung cancer63,64 and hepatocellular
carcinoma.65

In addition to its glycolytic function, ALDO A is involved in
several functions, which are distinct from its glycolytic role, such as
signal transduction,66 vesicle trafficking,67 and cell motility.68

Several studies have demonstrated that ALDO A interacts with the
F-actin, which is involved in cell division during cytokinesis. Thus,
ALDO A knockdown reduces cell proliferation but is apparently
not effective on glycolytic flux, and increases multinucleation.69

Recently, ALDO A overexpression has been shown to promote
EMT and cell migration by decreasing E-cadherin and β-catenin,
and by concomitantly increasing fibronectin and vimentin, all
processes that favour tumorigenicity63 (Figure 1b). ALDO A has
also been found in the nuclear localisation of many types of
tumour,70,71 whereas decreased proliferation has been shown to
induce a reduction in ALDO in the nucleus.69 The mechanisms
involved in the subcellular localisation of ALDO A are not yet
clearly known and it might act as a cofactor favouring
proliferation. Its transport towards the nucleus may be regulated
by phosphorylation as described in vitro by PKCμ and ERK2.72 The
inhibition of kinases, such as Akt and PKC that are frequently
overexpressed in carcinogenesis73 have been shown to alter ALDO
A nuclear localisation.74 In the nuclear compartment, ALDO A
associates with nucleic acids, particularly with AT-rich DNA
sequences.71,75 This association may have a role in the stabilisation
of transcripts76 and could also be involved in agents such as
ultraviolet radiation77 (Figure 1b). ALDO A seems to be related
with the activation of transcription of certain genes involved in S
phase and may also be correlated with proliferative cell activity
(for example, DNA replication)69,74,75 (Figure 1b).
TPI is an homodimeric enzyme that converts dihydroxyacetone

phosphate into glyceraldehyde-3-phosphate, and only the latter
can complete glycolysis and thus prevent the accumulation of
dihydroxyacetone phosphate.78 TPI has been found in increased
levels in lung cancers,79 squamous cell lung carcinomas80 and
urinary cancers.81 It has also been shown to be upregulated in
chemoresistant ovarian carcinoma compared to sensitive parental
cell lines.82 In fine, activation of this enzyme is responsible for ATP
production by glycolysis, whereas its inhibition or slow-down

orients dihydroxyacetone phosphate towards the PPP,83 which is a
key source of reduced NADPH, a cofactor for anabolic pathways
(for example, fatty acid biosynthesis) and in maintaining the redox
balance.84 Moreover, PPP produces ribose and is involved in the
transcription of gene expression during stress conditions.85 Thus,
TPI regulates the distribution of metabolites between glycolysis or
PPP, by coordinating NADPH,H+ and ATP production with redox
metabolism depending on reactive oxygen species production.
Gruning et al. demonstrated that an accumulation of phosphoe-
nolpyruvate inhibits TPI activity,83,86 which in turn promotes the
PPP pathway, protecting cells against oxidants and, consequently,
preventing reactive oxygen species accumulation. In contrast, the
loss of TPI catalytic activity is a consequence of phosphorylation of
this glycolytic enzyme by the cyclin A/Cdk2 complex, resulting in
disrupted energy production in etoposide-treated HeLa cells,
rendering these cells sensitive to apoptosis.87 Interestingly,
upregulation of TPI expression could partially reverse the
multidrug-resistant phenotype of SGC7901/VCR, suggesting that
TPI may be an anti-drug-resistant agent in gastric cancer and a
target candidate for developing novel therapeutics for better
treatment of gastric cancer.88

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
GAPDH is one of most the important enzymes involved in cell
energy metabolism as it produces glycerate-1,3-biphosphate and
NADH,H+, an essential cofactor required for ATP production by
OXPHOS, and/or to sustain lactate dehydrogenase-5 activity. It is
noteworthy that lactate dehydrogenase-5 activity, which is
stimulated by HIF13 and is crucial to regenerate NAD+, required
for GAPDH activity. The GAPDH gene is classically used as a
housekeeping gene, but it is known to be overexpressed in many
tumours compared to in normal tissue, and correlated with poor
prognosis or tumour aggressiveness (for example breast, color-
ectal, glioma, lung, melanoma ovarian, pancreatic, prostatic and
renal cancer) (for a review, refer to Guo et al.89), and increased
drug resistance.90

Various non-glycolytic functions of GAPDH have been reported in
cancer, such as involvement in cell death,91–94 DNA repair,95,96

immunity97 (for a review, refer to Tristan et al.98) and cancer cell
senescence.99 These functions are dependent on the localisation of
the enzyme (mainly located in cytoplasm, but also in nucleus,
mitochondria and vesicular fractions).98,100,101 Exposure to
various stresses (for example, DNA damage, S-nitrosylation),92

(for a review, refer to Huang et al.102) modification of conformation
(homo-oligomerisation, tetrameric structure) and post-translational
modifications of GAPDH such as acetylation103–106 and
phosphorylation107 influence the localisation and function of this
enzyme. It has been reported that GAPDH overexpression is
associated with cell proliferation via its effect on cyclin B-cdk1
activity.108 Moreover, in the case of abundant glucose, GAPDH links
its substrate, glyceraldehyde-3-phosphate, liberating the small
GTPase Rheb that is recognised as an important positive regulator
of mTORC1,109 a crucial pathway regulating many cellular
responses to growth factors73 (Figure 2).
GAPDH seems to have controversial action on apoptosis.

Certain studies have reported a proapoptotic function92,105 when
GAPDH is located in the mitochondria and associated with the
voltage-dependent anion channel 1 to induce apoptosis.94

Contrariwise, others have described a protective role and
its implication in tumour progression110 (for a review, refer to
Colell et al.91).

Phosphoglycerate mutase (PGAM)
PGAM catalyses the interconversion of 3-phosphoglycerate (3-PG)
and 2-phosphoglycerate (2-PG), corresponding to the eighth
reaction of glycolysis. PGAM activity is commonly upregulated in
many human cancers80,111,112 and its inhibition is lethal to cancer
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cells in culture.113 PGAM plays a crucial role in coordinating
glycolysis and biosynthesis of pathways to promote cancer cell
proliferation, particularly in hypoxia. Indeed, under hypoxic
conditions, the expression of the PGAM gene is induced, resulting
in increased protein expression and concomitant elevation of

PGAM enzymatic activity.114,115 This induction might contribute
towards the regulation of glycolytic flux and cell adaptation
hypoxia.116 PGAM is a critical regulatory step in glycolysis as PGAM
inhibition by epoxide inhibitors is lethal to cancer cells.117

Overexpressed PGAM can maintain its substrate (3-PG) at low
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levels, abrogating its inhibition of the G6P dehydrogenase enzyme
involved in PPP. Furthermore, the increase in 2-PG activates the
phosphoglycerate dehydrogenase enzyme, which diverts the 3-PG
to serine biosynthesis, thus contributing towards the needs of
rapidly growing tumours9,118 (Figure 3a).
Acetylation and phosphorylation are post-translational modifi-

cations in cells and the majority of enzymes participating in
glycolysis are acetylated on lysine residues, including PGAM.119

Thus, PGAM1 regulates anabolic biosynthesis by controlling
intracellular levels of substrate, the 3-PG, and product, the 2-PG.
Acetylated PGAM displays enhanced activity, whereas Sirt1, a
member of the NAD+-dependent protein deacetylases, leads to
PGAM deacetylation and downregulation of mutase activity.120

This deacetylation maintains a high level of intracellular 3-PG,
which in turn reduces PPP level by inhibiting G6P dehydrogenase.
Phosphorylated PGAM (Tyr26) by fibroblast growth factor receptor
1 induces release of inhibitory Glu19 by facilitating access to the
active site and by stabilising active conformation121 (Figure 3b).
This phosphorylation is crucial for the mutase reaction, transform-
ing 3-PG to 2-PG in glycolysis118,122 and inducting the 2-PG level,
which in turn sustains phosphoglycerate dehydrogenase. This
enzyme diverts 3-PG from glycolysis to serine synthesis and
contributes towards maintaining a low level of 3-PG in cancerous
tumours. Moreover, the phosphoenolpyruvate pyruvate kinase
(PK) substrate can phosphorylate PGAM at the catalytic His11
(H11), producing pyruvate (the same applies in the absence of
PKM2 activity)123 and 2,3-BPG, which is a cofactor for phosphor-
ylating His11122 (Figure 3b).

Pyruvate kinase
PK catalyses the tenth and last reaction of glycolysis, which also is
an irreversible reaction by transferring the phosphate from
phosphoenolpyruvate to ADP to produce ATP and pyruvate.124

There are two distinct PK genes: PKL/R (pyruvate kinase, liver and
red blood cells) and PKM2 (pyruvate kinase, muscle), which
express four PK isoforms: L, R, M1 and M2,125,126 (for a review, refer
to Mazurek127). PKM1 and PKM2 are encoded by alternative
splicing of the PKM gene125,128 which is notably regulated by three
heterogeneous nuclear ribonucleoproteins (hnRNPA1, A2 and I),
themselves regulated by c-Myc.129–131 Elevated PKM2 expression
is now known as a common characteristic of all cancers132 and is
closely associated with poor prognosis in certain tumours133–136

(for a review, refer to Wong et al.132).
PK is expressed in most cells and exists as inactive monomers,

less active dimers and active tetramers. The balance between
tetrameric and dimeric PKM2 is an oscillating phenomenon
subject to allosteric regulation: it is activated by the glycolytic
intermediate F1,6BP and by the biosynthetic by-product serine
and it is inactivated by the concentration of ATP and downstream
biosynthetic products (alanine, amino acids and lipids)
increases3,127,137–140 (Figure 4). Furthermore, PK is downregulated
by phosphorylation on Tyr105 by fibroblast growth factor receptor
1, Bcr-Abl and JAK2.141,142 Although dephosphorylated PKM2
tetramers orient pyruvate towards the tricarboxylic acid cycle to
produce ATP by OXPHOS, phosphorylated PKM2 dimers induce a
bottleneck that favours a high rate of biosynthesis, such as
nucleotides, phospholipids and amino acids5,143 but also indirectly
sustain the Warburg effect by regulating gene expression.144
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Besides phosphorylation, acetylation plays a role in the regulation
of PKM2, as acetylation on Lys305 decreases PKM2 activity,145,146

(for reviews, refer to Huang et al.102 and Yang and Lu147).
The relationship between dimeric or tetrameric PKM2 state

allows the proliferating cells to regulate their needs for anabolic
and catabolic pathways and is controlled by oncogenes and
tumour suppressors.129,137,148,149 MUC1 (mucin 1) is an oncopro-
tein that is overexpressed in many epithelial cancers150 (for a
review, refer to Kufe151). MUC1-cytoplasmic domain (MUC1-CD) is
translocated to the cell nucleus where it directly interacts with
multiple transcriptional factors and also acts as a transcriptional
coactivator by linking transcription factors, for example, STAT3,
NF-κB, β-catenin and HIF1-α (refer to the recent review by Nath
and Mukherjee152). Indeed, it is implied in the regulation of PKM2
activity by directly associating with PKM2 to enhance its activity,
whereas tyrosine phosphorylation of MUC1-CD decreases its
activity.153

PKM2 can be translocated from cytoplasm to cell nucleus under
certain conditions such as apoptotic signals,154 interleukin-3
response,155 phosphorylation by ERK1,156 acetylation on Lys
433146 and interaction with a dioxygenase/demethylase, Jumonji
C domain-containing dioxygenase (JMJD5)157 (for a review, refer
to Yang and Lu147) (Figure 4). In this compartment, PKM2 acts as
(1) a transcriptional coactivator, such as JMJD5/PKM2, which
modulates the HIF1α-mediated transcriptional reprogramming of
metabolic genes;157 nuclear PKM2 interacts with Oct-4 to enhance
Oct-4-mediated transcription potential158 and also with phos-
phorylated β-catenin to induce c-Myc expression leading to the
upregulation of glycolytic genes156,159 that promote tumorigen-
esis; (2) a kinase protein activates STAT3 via phosphorylation on
Tyr305 with phosphoenolpyruvate as a phosphate donor144 and
enhances the transcription of genes that are essential for tumour
cell proliferation, such as mek5 and hif1-α genes160 (for a review,
refer to Demaria and Poli161) but also promotes cell migration and
adhesion in a STAT3-dependent manner (Figure 4). These effects
are due to repression of E-cadherin by induction of Snail-2
expression,162,163 upregulation of matrix MMP-2 and MMP-9
(metalloproteinases-2 and -9)162 and could be responsible for
metastatic progression (for review on MMP-2 and -9, refer to
Bauvois164). Finally, PKM2 phosphorylates histone H3 on Thr11, a
process that is required for histone H3 acetylation on Lys9; they
also remove histone deacetylase 3 (HDAC3) from CCDN1 and MYC
promoter.165 All these effect favour cell proliferation, invasion,
metastasis and epigenetic regulation of gene expression.

CONCLUSIONS
Dysfunctions in oncogenes and or tumour suppressor genes cause
modifications in various intracellular signalling pathways, which
reprogramme tumour cells metabolism to allow enhanced survival
and growth. Enhanced aerobic glycolysis has a key role in this
metabolic reprogramming. The complex process of cancer growth
needs a flexible cell metabolism, in which the nonenzymatic
functions of most enzymes of glycolysis may offer an important
contribution. Although each enzyme may have multifaceted roles,
roughly HKII and PGI have mainly an antiapoptotic effect, PGI and
GAPDH activate survival pathways (Akt and so on), PFK1 and TPI
participate in cell cycle activation, ALDO promotes EMT and PKM2
enhances various nuclear effects such as transcription, stabilisa-
tion and so on. These multifaceted roles of enzymes participate
towards linking the plastic metabolism of cancer cells with various
processes sustaining cancer cell growth and implied in tumour
relapse, while potentially contributing towards the link between
obesity with shortened life span or cancer. Further studies should
consider these functions linking glycolysis and tumour growth
which very likely will allow to develop new anticancer strategies.
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