pH and Buffers Practice

Find the pH of a 0.25 L solution containing 40 g of acetic acid and 60 g of sodium acetate

What is the pH of a solution containing $75 \mathrm{mM}^{2} \mathrm{HPO}_{4}{ }^{2-}$ and $80 \mathrm{mM} \mathrm{H}_{2} \mathrm{PO}_{4}$? The total volume of the buffer is 500 ml .

How many grams of sodium succinate and disodium succinate must be added to 0.5 I of water to produce a solution with a pH of 6.0 and a final buffer concentration of 50 mM .

Relate the pH of a solution with the ability for a compound to be a reasonable buffer. Is this different than buffer capacity? What is "buffer capacity"?

Oleic acid, a lipid, will form a micelle in aqueous solutions with a pH greater than 7 but are insoluble in solutions of pH less than 4 . The pKa for for the fatty acid is about 5 . Explain why.

An enzyme-catalyzed reaction was carried out in 50 ml of a 0.10 M lactate buffer, pH 4.10 . As a result of the reaction, 0.025 mole/liter of H^{+}was produced.
a) What was the ratio of conjugate acid to conjugate base at the start of the reaction?
b) What are the concentrations of each form of lactate at the start of the reaction?
c) What was the pH at the end of the reaction?
d) Would you have designed the buffer this way? Why?

