The Mechanism of the Self-Initiated Thermal Polymerization of Styrene. Theoretical Solution of a Classic Problem

Kelli S. Khuong,† Walter H. Jones,† William A. Pryor,‡ and K. N. Houk*†

Contribution from the Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, and Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804

Received August 25, 2004; E-mail: houk@chem.ucla.edu

Abstract: The Mayo and Flory mechanisms for the self-initiation of styrene polymerization were explored with B3LYP and BPW91 density functional calculations. The Diels−Alder dimer (AH) is the key intermediate, and the lowest energy pathway for AH formation is a stepwise mechanism via a gauche/sickle (M₂Gs) or gauche/U-shaped (M₂Gu) diradical. Ring closure of the 1,4-diradical to diphenylcyclobutane (DCB) is predicted to have a lower barrier than ring closure to AH. Dynamic effects are likely to play an important role in determining the rate of AH versus DCB formation. Hydrogen transfer from AH to styrene to generate two monoradical species is predicted to be a reasonable process that initiates monoradical polymerization.

Introduction

Polystyrene is among the most important synthetic polymers, used in everything from home insulation products and drinking cups to plastic cutlery and those “peanuts” that spill out when a fragile package arrives in the mail. The control of polymerization is of great commercial significance. Whereas the controlled thermal polymerization produces the highest molecular weight in radical initiated polystyrene,1 undesirable spontaneous polymerizations can clog styrene production facilities. Purified styrene polymerizes at a rate of 0.1% per hour at 60 °C and 2% per hour at 100 °C.2

Several mechanisms for the spontaneous thermal polymerization were proposed two-thirds of a century ago, but there is no consensus as to the correct mechanism.3 The contenders are the Mayo mechanism,4 radical initiation proceeds by a Diels−Alder dimerization of styrene. Molecule-assisted homolysis1,5 between the dimer (AH) and a third styrene generates the monoradical initiators A* and HM* that initiate polymerization. Flory proposes that styrene dimerizes to form a singlet 1,4-diradical (M₂).6 A third styrene abstracts a hydrogen atom from the diradical to generate monoradical initiators capable of starting the chain polymerization process. Alternatively, the diradical itself may be capable of initiating polymerization. Finally, there is a connection between the Mayo and Flory proposals: the diradical may actually ring-close to form either 1,2-diphenylcyclobutane (DCB), a species that is inactive to polymerization, or the AH dimer, in which case the Diels−Alder cycloadduct is formed in a stepwise process and then can transfer hydrogen and initiate polymerization.

We have undertaken an investigation of these mechanisms using modern computational methods. B3LYP,7 a hybrid density functional method, was used to calculate the energetics and geometries of the structures involved in the AH and DCB formation pathways. The results are presented here and compared with the experimental data. Theoretical calculations provide a framework to understand the complex interplay of factors that determine the rate of AH versus DCB formation and the initiation of monoradical polymerization.

Figure 1. Mayo and Flory mechanisms.

1 University of California, Los Angeles.
2 Louisiana State University.

functional method, accurately reproduces activation barriers and reaction energies for concerted pericyclic reactions\(^8\) as well as for competing stepwise processes.\(^9,10\) In some cases, however, pure generalized gradient DFT methods such as BLYP\(^7\) or BPW91\(^11\) outperform hybrid DFT methods for the exploration of single diradical surfaces.\(^12\) In view of these results, we have applied both B3LYP and BPW91 to the study of styrene self-polymerization: the mechanism for formation of key intermediates AH and \(\cdot\mathbf{M}_2\), the subsequent generation of active monoradical species, and the competing self-termination via DCB formation. We have also used model systems to examine the processes of monoradical versus diradical polymerization, chain transfer, and termination.

Background

 Numerous experimental studies have tackled the question of whether the Diels–Alder dimer AH or the diradical \(\cdot\mathbf{M}_2\) is the essential intermediate in the self-initiation process. Most studies support the formation of \(\mathbf{A}^*\) and \(\mathbf{HM}^*\) as the monoradical initiators, but the diradical \(\cdot\mathbf{M}_2\) has not been unequivocally ruled out as playing a role in the initiation process.

Thermal polymerization of styrene produces both polymer and a complex mixture of dimers and trimers whose composition is dependent on the reaction conditions.\(^3\) In the absence of initiators or radical inhibitors, trans- and cis-1,2-diphenylcyclobutane are the major dimeric products formed in a 2:1 ratio, with minor amounts of 1-phenylethyltetrafulin (PhT), 1,3-diphenylcyclobutane, and 1-phenyl-1,2-dihydronaphthalene (PhN).\(^13\) The presence of I\(_2\) in the reaction catalyzes formation of PhT\(^4\) at the expense of cyclobutane formation,\(^14\) whereas the presence of aromatic nitro compounds leads to inhibition of polymerization and increases the formation of PhN.\(^4\) The presence of the dimers indicates the formation of both the 1,4-diradical as well as the AH dimer but does not provide direct evidence for the mechanism of polymer initiation.

![Disproportionation](image)

Figure 2. Postulated reaction mechanism that explains the reactivity of the AH intermediate. Reaction of AH with styrene monomer generates a caged radical pair that can then undergo further reactions.

The relative amounts of dimer, trimer, and polymer, listed in Table 1, give several clues to the mechanism of the self-initiation process. First, the amount of products derived from AH (dimer PhT and trimer A-Sty) significantly outweighs the amount of DCB. Second, the relative amounts of PhT A-Sty, and polymer give a rough indication of the relative rates of disproportionation, combination, and diffusion.\(^2\) On the basis of Brown’s results,\(^13\) the rates of disproportionation and diffusion out of the cage are roughly the same, and the rate of combination is about 10 times faster. This is qualitatively consistent with Kirchner and Buchholz’s results that indicate the activation

<table>
<thead>
<tr>
<th>dimer</th>
<th>trimer</th>
<th>polymer</th>
<th>conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4 × 10^2 mol %</td>
<td>5.0 × 10^2 mol %</td>
<td>3.8 × 10^2 mol %</td>
<td>31 hr</td>
</tr>
<tr>
<td>3.0 × 10^3 mol % PhT</td>
<td>3.8 × 10^3 mol % eDCB M 2</td>
<td>500 000</td>
<td></td>
</tr>
<tr>
<td>0.7%</td>
<td>95.5%</td>
<td>100% conv</td>
<td></td>
</tr>
</tbody>
</table>

The major trimers are 1,3,5-triphenylhex-5-ene (Hex) and stereoisomers of 1-phenyl-4-(1′-phenylethyl)-tetralin (A-Sty). The formation of A-Sty has implications for the initiation mechanism. One reasonable mechanism involves reaction of AH and M to generate a caged radical pair, AH/M. Radical combination generates A-Sty, diffusion out of the cage leads to the initiating species \(\mathbf{A}^*\) and \(\mathbf{HM}^*\), and disproportionation produces dimer PhT. Alternatively, A-Sty could be formed in a single step by an ene reaction of AH and styrene (Figure 2).

References

energy for A-Sty formation is 20.5 kcal/mol while the activation energy of initiation is 9 kcal/mol higher.\(^\text{16}\)

Attempts to trap the initiating species have been moderately successful. Chong et al. reported that the propagation of styrene polymerization was effectively retarded with FeCl\(_3\) in DMF without any change in the normal course of the reaction.\(^\text{18}\) Use of FeCl\(_3\) as a trapping agent did not affect the distribution and rate of formation of dimers and trimers. Oligostyrenes 1-Cl and 2-Cl were isolated and characterized by \(^1\)H NMR and UV, suggesting that monoradicals HM\(^+\) and A\(^+\) were both initiators.

Buzanowski et al. probed the nature of the initiating species with the hypothesis that the 1,4-diradical should be immune to acid catalysis but the Mayo dimer AH would be quickly aromatized to inactive dimer PhT in the presence of acid.\(^\text{21}\) Increasing acid strength or concentration resulted in retarded rates of polymerization and increased molecular weights, supporting the role of the AH in the polymerization.

Several studies have used kinetic isotope effects as a probe for the initiation step. Use of styrene-\(\beta,\beta^{-d_2}\) gave an inverse KIE of 0.78–0.88\(^\text{22}\) and rules out the following initiating step:

Replacing the ortho-hydrogens of styrene with deuterium labels resulted in a modest normal KIE, suggesting that the ortho-H(D) is transferred to another molecule of styrene in the rate-determining initiating step.\(^\text{23}\) This interpretation is consistent with the formation of monoradicals A\(^+\) and HM\(^+\) and with the third-order initiation reported by Mayo for styrene polymerization in bromobenzene\(^\text{24}\) and independently verified by Hiatt and Bartlett for a styrene/ethyl thioglycolate mixture.\(^\text{23}\)

Thermolysis of 3,6-diphenyl-3,4,5,6-tetrahydropyridazines (4 and 5) was used as an alternative method for generation of the 1,4-diradical \(\text{M}^+\) and study of its reactivity.

Nitroxides have also been used as trapping agents, and structures analogous to oligomers 1-Cl and 2-Cl have been identified.\(^\text{19,20}\) Unlike FeCl\(_3\), which does not interfere with the rate of formation of dimers and trimers. Oligostyrenes 1-ONR\(_2\) and 2-ONR\(_2\) were both initiators. The 1,4-diradical inter-

\[R_2NO\cdot \]

mediate is not trapped in these experiments, but 1,2-diphenyl-

\[\text{Ph}_2\text{PhN} \]

cyclobutanes are still present in the product mixture.\(^\text{19}\)

\[\text{AH} \]

to fragment, cyclize to DCB, or cyclize to AH.25 \textit{cis}-DCB, trans-DCB, PhT, and 2-phenyltetralin are dimers typically observed during photopolymerization of styrene,26 but no AH derivatives (e.g., phenyltetralin) have been observed upon photolysis of diphenylcyclobutanes.27

The thermal rates of initiation, propagation, chain transfer, and termination have been measured and are listed in Table 2. Because the measured rate of initiation \(R_i \) corresponds to a complex rate equation that depends on the rates of several elementary steps, it is not directly comparable to a single computed activation barrier. However, the experimental values can serve as a guide for whether the calculated activation barriers are reasonable.

Table 2. Rate Constants for Self-Initiated Styrene Polymerization Measured by Viscometry at 25 °Ca

<table>
<thead>
<tr>
<th>Process</th>
<th>(k) (M-1s-1)</th>
<th>(E_a) (kJ/mol)</th>
<th>(\Delta H^0) (kJ/mol)</th>
<th>(\Delta G^0) (kJ/mol)</th>
<th>(\Delta S^0) (eu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiation</td>
<td>(1.32 \times 10^{-15})</td>
<td>37 ± 2</td>
<td>10.09</td>
<td>36.4</td>
<td>37.7</td>
</tr>
<tr>
<td>Propagation</td>
<td>18.7 ± 1.1</td>
<td>6.5 ± 1</td>
<td>6.01</td>
<td>5.9</td>
<td>15.7</td>
</tr>
<tr>
<td>Transfer</td>
<td>(6.68 \times 10^{-4})</td>
<td>14.2 ± 1</td>
<td>7.18</td>
<td>13.6</td>
<td>21.8</td>
</tr>
<tr>
<td>Termination</td>
<td>(2.79 \times 10^6)</td>
<td>2.8 ± 1</td>
<td>8.19</td>
<td>2.2</td>
<td>8.7</td>
</tr>
</tbody>
</table>

\(\text{a} \) Rate constants and \(E_a \) values are given in M-1s-1; \(E_a \), \(\Delta H^0 \), \(\Delta G^0 \) in kcal/mol; and \(\Delta S^0 \) in eu.

The experimental evidence strongly points to the intermediacy of the AH dimer, but the questions still remain: what is the mechanism for formation of AH? Is the 1,4-diradical an obligatory intermediate, or do concerted [4+2] and diradical [2+2] cycloadditions compete?

Computational Methodology

Geometry optimizations were performed with B3LYP/6-31G* and BPW91/6-31G* as implemented in Gaussian 98.29 Diradicals and transition structures leading to diradicals were treated with unrestricted B3LYP and BPW91 in cases when the HOMO–LUMO mixing in the initial guess led to unrestricted wave functions that were more stable than the corresponding restricted wave functions. All minima and transition structures were characterized by their vibrational frequencies. Reported energies are relative enthalpies (\(\Delta H_{98K} \)) and relative free energies (\(\Delta G_{298K} \)) and include unscaled zero-point energy corrections and thermal corrections to 298 K. (\(S^0 \)) values of the singlet diradical species range from 0.1 to 1.1, indicating varying degrees of spin contamination. Spin correction30,31 was carried out on the diradical species to estimate pure singlet UB3LYP energies. The UBPW91 diradical species were not spin corrected.

Results and Discussion

The organization of the Results section of this paper is as follows. First, the concerted cycloadditions of styrene are described. Next, the stepwise diradical pathways are discussed, with close attention given to the various conformations and lifetime of the styrene 1,4-diradical formed from dimerization of styrene. Third, the generation of monoradical species is explored, and monoradical versus diradical propagation is compared. Fourth, the role of dynamics on the outcome of the styrene dimerization is discussed in the context of both computational and experimental results. Finally, the processes of chain transfer and disproportionation are examined. For those readers who are less interested in the computational details describing the behavior of 1,4-diradicals, we recommend skipping to the section titled “Monoradical and diradical initiators.”
leads to formation of the BH dimers, BHx and BHn. The enthalpies and free energies of the concerted transition structures and resulting products are listed in Table 3.

Most striking is the prediction that Diels–Alder transition structures AHx–TSDA and AHn–TSDA are not stationary points on the potential energy surface. Although RB3LYP locates such structures, the restricted wave functions are unstable, indicating that unrestricted wave functions provide a better description of the electronic structures of the highly asynchronous optimized geometries (Figure 3). Reoptimization with UB3LYP generates diradical transition structures TS2x and TS2n (discussed in the next section). RBPW91 does not locate concerted AH transition structures; it actually locates TS2x and TS2n and describes these diradical transition structures with a closed-shell wave function (discussed in next section).

In contrast, both RB3LYP and RBPW91 locate the concerted transition structures for formation of the BH isomers. These TSs are more synchronous: the forming σ-bonds differ in length by only 0.1–0.2 Å and resemble typical Diels–Alder transition structures.
structures (Figure 3). RB3LYP predicts BHx−TS DA and BHn−TS DA to have enthalpies of 35.1 and 35.6, respectively, while RBPW91 predicts the enthalpies to be 4–5 kcal/mol lower. The free energies of activation are significantly higher than the relative enthalpies because of unfavorable activation entropies characteristic of bimolecular pericyclic reactions (ΔS°298K values range from −50.6 to −51.7 eu).

The results on the concerted transition structures imply that the Diels–Alder adducts AHx and AHn are not formed by a typical closed-shell cycloaddition but arise from stepwise cycloadditions involving highly stabilized diradicals. Interestingly, the activation energy of 25 kcal/mol is essentially the same as the concerted cycloaddition of butadiene and ethylene.8

Stepwise Cyclization To Form AH and DCB

The diradical TS1 corresponds to tail-to-tail bond formation and generation of the 1,4-diradical ‘M2’ (top of Scheme 2). Diradical bond formation can occur in five distinct conformations, referred to as At (anti-trans), Ac (anti-cis), Gs (gauche-sickle), Gu (gauche-U), and Gw (gauche-W). The first letter, either A or G, refers to the dihedral angle about the forming σ-bond. The second letter refers to the orientation of the phenyl groups with respect to each other: trans, cis, sickle-shaped, U-shaped, or W-shaped.

Of the five possible conformations for TS1, At, Ac, and Gs have the most favorable enthalpies, while Gu and Gw have enthalpies that are 1–2 kcal/mol higher. A Boltzmann distribution based on the TS1 B3LYP enthalpies indicates that At, Ac, and Gs account for ~95% of the 1,4-diradicals formed. When the free energies are used instead, the At and Ac account for ~80% and Gs becomes less significant at 12%. Representative structures are shown in Figure 4.

The initially formed 1,4-diradical intermediates can also be described as At, Ac, Gs, Gu, and Gw conformers. Both UB3LYP and UBPW91 predict that the five ‘M2’ conformations shown in Scheme 2 all lie within 1.0–1.5 kcal/mol of each other. Rotations about the newly formed C2–C3 σ-bond have barriers of ~2 kcal/mol and interconvert At/Gs and Ac/Gw.

Rotations about the C1–C2 bond or (alternatively the C3–C4 bond) cost very little energy and interconvert At/Ac, Gs/Gu, and Gs/Gw. Model calculations shown in Figure 5 indicate that C1–C2 dihedral angles of 90° to 270° differ in energy by less than 0.1 kcal/mol. Such low rotational barriers are typical of 6-fold potentials that lack steric repulsion.33 From 270 to 0°, steric repulsion due to A1,3 strain becomes important, and the energy increases dramatically.

The primary difference in the UB3LYP and UBPW91 descriptions of the 1,4-diradical intermediates is that UB3LYP predicts ‘M2’ to lie in a deeper well (higher barriers to revert to styrene or to close to either AH or DCB) than predicted by UBPW91 (lower barriers to revert to styrene or to close to either AH or DCB). As discussed in the background section, the ratio of cis-DCB to trans-DCB is highly dependent on the method.

of generating the 1,4-diradical. This implies that the lifetime of ‘Mψ’ is too short for complete equilibration among the various possible conformations.

As shown in Scheme 2, the gauche-type diradicals are the reactive conformers leading to styrene dimers via formation of a second σ-bond. The ‘Mψ2Gs’ can form either AHx or cis-DCB, the ‘Mψ2Gu’ can form either AHn or trans-DCB, and the ‘Mψ2Gw’ can form only trans-DCB. This discussion will first focus on the characteristics of TS2x and TS2n and then on the characteristics of TS2DCB and TS1DCB.

Figure 6. TSs for the ring closure of ‘Mψ’ to AHx and AHn. B3LYP, B3LYP with spin projection (in parentheses), and BPW91 [in brackets] enthalpies in kcal/mol. Bond lengths are given in Å.

TS2x and TS2n correspond to the stepwise formation of the exo and endo Diels–Alder adducts (Figure 6). Figure 7a is a plot of the reaction coordinate describing conversion of ‘Mψ2Gs’ (no bond C) to AHx (fully formed bond B) and is useful for illustrating several key features of these transition structures. First, UB3LYP predicts that the barrier to form AHx from the diradical is ~5 kcal/mol, whereas UB3LP91 predicts this barrier to be significantly lower, ~1 kcal/mol. Second, B3LYP predicts that TS2x occurs when bond B is 2.455 Å, which is located before the functional switches from the unrestricted to the restricted regime which occurs when bond B is ~2.40 Å; consequently, the diradical transition structure TS2x must be located with unrestricted B3LYP. On the other hand, BPW91 switches from the unrestricted to the restricted regime much earlier, when bond B is still ~2.9 Å such that the diradical transition structure TS2x is treated as a closed-shell structure with S2 = 0. As pointed out by Grafenstein et al.,10 restricted hybrid density functionals such as B3LYP are characteristically less stable with respect to unrestricted solutions than GGA functionals such as BPW91.34

Third, a common feature of the B3LYP and BPW91 reaction coordinates is that bond A shows a cooperative lengthening and subsequent shortening as bond B is forming (Figure 7a, shaded triangles). This implies that TS2x benefits from some vestiges of aromatic character35 even though the cycloaddition proceeds by a stepwise [4+2] mechanism; stretching of bond A leads to some cyclic delocalization in the transition structure.

TS2n has characteristics similar to TS2x. The relative enthalpy of TS2n is slightly higher than that of TS2x because of increased steric interactions between the two phenyl rings. In the exo Diels–Alder product, the remaining phenyl ring is in a pseudoequatorial position, whereas in the endo product the phenyl ring is in a pseudoequatorial position.

The overall process, TS1 followed by either TS2DCB or TS1DCB, corresponds to a stepwise [2+2] cycloaddition (Figure 8). Figure 7b is a plot of the reaction coordinate describing conversion of ‘Mψ2Gs’ (no bond C) to cis-DCB (fully formed bond C). As was observed in Figure 7a, BPW91 predicts a smaller barrier and flatter surface than B3LYP, and as a result, the forming cyclobutane bond (bond C) is longer in the BPW91 TS2DCB than in the analogous B3LYP TS2DCB. Of additional interest is that the stepwise [2+2] cycloaddition also demonstrates a cooperative effect of bond A as bond C is forming. In this case, the opposite effect is observed: bond A contracts and subsequently lengthens (Figure 7b, shaded triangles). TS2DCB benefits by minimizing any electron delocalization, thus minimizing any vestiges of antiaromatic character. The fluctuation in the length of bond A is 10 times smaller for closure to cis-DCB (0.025 Å) than for closure to AHx (0.25 Å).

It is not obvious from the simple Newman projections of ‘Mψ2Gs’, ‘Mψ2Gu’, and ‘Mψ2Gw’ why TS2DCB is lower in enthalpy than TS1DCB. A side-view of the three transition structures leading to DCB dimers provides a clearer depiction of the steric and electronic factors involved in the formation of a cyclobutane ring (Scheme 3). As shown in the idealized representations of

(34) Hybrid DFT methods include a portion of exact HF exchange which leads to larger instability because HF is always less stable than DFT. Also see ref 7 and ref 12b.

the transition structures, TS_{DCB} is lowest in enthalpy because it has two equatorial phenyl groups whereas TS_{DCB}' is highest in enthalpy with two axial phenyl groups. Like the transition structures for ring closure of tetramethylene, the TS_{DCB} geometries show poor overlap of the carbons in the forming σ-bond.\(^\text{36}\)

UB3LYP predicts that M_2^2Gs produces cis-DCB significantly faster than it produces AHx (Scheme 2). UBFW91, on the other hand, predicts that in some cases the DCB dimer is formed more slowly than the corresponding AH dimer. Because the thermolysis of azo compounds 4 and 5 and cis-DCB produced no isolable AH derivatives, it appears that UB3LYP has better agreement than UBFW91 with the experimental results involving the 1,4-diradical. In addition, activation parameters for the formation of both cis-DCB and trans-DCB and decomposition of cis-DCB have been measured experimentally (Table 4). The UB3LYP activation enthalpies closely match the experimental values, whereas both spin-corrected UB3LYP and UBFW91 predict activation enthalpies that are too low.

Finally, despite ring strain, the DCB dimers are approximately 10 kcal/mol more stable than the AH and BH dimers (Table 3) because two aromatic rings are maintained in the former. Consequently, cyclobutane adducts will not form Diels–Alder adducts upon equilibration.

Monoradical and Diradical Initiators. A key step in the spontaneous polymerization of styrene is the generation of radical initiators capable of adding to a styrene monomer. Scheme 4 highlights two processes that could potentially contribute to the formation of monoradical species.
In eqs 3 and 5, styrene abstracts a hydrogen atom from either AH or αM_2 to generate phenylethyl radical HM^* and another monoradical species capable of initiating the chain polymerization (Figure 9). B3LYP barriers for hydrogen abstraction are systematically 9 kcal/mol higher than the BPW91 barriers; however, both methods predict that abstraction from the AH cycloadducts is favored by 15−22 kcal/mol over abstraction from the 1,4-diradical. Likewise, the resulting monoradical A^* is 17 kcal/mol more stable than M_2^*. Another factor that casts doubt on the importance of eq 5 is that hydrogen abstraction from αM_2 would be significantly slower than ring closure to either AH or DCB. The computational prediction that hydrogen abstraction from AH is much more likely than from αM_2 is entirely consistent with the experimental KIE studies that indicate an ortho-deuterium and not a β-deuterium is transferred during the rate-determining step.22

An ene reaction between AH and styrene is one mechanism postulated for the formation of trimer $A-Sty$ (eq 4). Kirchner and Buchholz report the activation energy for $A-Sty$ formation as 20.5 kcal/mol (100−152 °C),16 which is significantly lower than the measured activation energy of initiation of 37 kcal/mol.28 For this reason, Kirchner and Buchholz propose the ene mechanism to be reasonable. Other authors, such as Pryor and Lasswell,3 suggest that $A-Sty$ is formed by both the ene reaction and by combination of monoradicals A^* and HM^*. Finally, Buzanowski et al. concluded that the ene reaction is not a viable pathway because FMO calculations predict that the major ene product would be the β-phenethyl derivative which is not observed experimentally.21

The calculated ene transition structures are shown in Figure 10. The ene reaction of AHx plus styrene has an activation enthalpy of 19.6 kcal/mol, which is 4.3 kcal/mol lower than the barrier for hydrogen abstraction. Similarly, the ene reaction involving AHz has an activation enthalpy of 19.2, which is 3.8 kcal/mol lower than the barrier for hydrogen abstraction. The calculated ene geometries are unusual for a pericyclic reaction in that hydrogen transfer from AH to styrene is clearly occurring but C−C bond formation has progressed very little. Despite the unusual geometry, several features suggest that these TSs do correspond to the ene reaction and not to another possible

Table 4. Experimental Kinetic Parameters Measured for the Formation and Disappearance of cis- and trans-DCB

| Scheme 4 | Figure 9. TSs for styrene hydrogen abstraction from AH or αM_2. B3LYP, B3LYP with spin projection (in parentheses), and BPW91 [in brackets] enthalpies in kcal/mol. Bond lengths are given in Å.

| Scheme 5 | Figure 10. TSs for ene reaction between AH and styrene. B3LYP and BPW91 [in brackets] enthalpies in kcal/mol. Bond lengths are given in Å.

conformation for hydrogen abstraction. As compared to the abstraction TSs, the ene transition structures have the following characteristics: (1) they are significantly more stable, indicating that the incipient radical centers are strongly interacting and pericyclic overlap is present, (2) the hydrogen is transferred to styrene to a smaller extent, signifying that they are earlier than the abstraction TSs, and (3) the C–H–C geometry is bent, not linear, which is necessary to maintain cyclic overlap. IRC calculations confirm the concerted nature of the ene TSs; therefore, we conclude that the ene reaction of AH and styrene is an important contributor to the formation of trimer A-Sty and serves to decrease the concentration of AH that can undergo hydrogen abstraction.

Scheme 5

\[
\text{AH}^+ \quad \text{M} \quad \text{TS}_{\text{dirad}} \quad +7.3 \quad \text{[6.3]} \\
\text{AH}^+ \quad \text{M} \quad \text{TS}_{\text{mono}} \quad +7.7 \quad \text{[6.8]} \\
\]

A final consideration is whether a monoradical initiator is inherently superior to a diradical initiator at adding to a monomer. This was examined by comparing TS_{mono} and TS_{dirad} (Scheme 5, Figure 11). TS_{mono} corresponds to the addition of phenylethyl radical to styrene. It has an enthalpic barrier of 6–8 kcal/mol relative to noninteracting styrene and phenylethyl radical. TS_{dirad} corresponds to the addition of 'M_2' to styrene, and its barrier also falls in the 6–8 kcal/mol range. These results are consistent with the conclusion that diradical chain propagation is not disfavorable because of a high barrier for addition to monomer but because of a high rate of intramolecular self-termination.\(^{3,37}\) The difference in computed \(\Delta G^3\) values predict that self-termination of the 1,4-diradical occurs over 10\(^{11}\) times faster than diradical propagation.\(^{38}\)

Figure 11. TS models for monoradical and diradical styrene propagation. B3LYP, B3LYP with spin projection (in parentheses), and BPW91 [in brackets] enthalpies in kcal/mol. Bond lengths are given in Å.

Combination of Experimental and Computational Results: The Mechanism for Styrene Self-Initiation. As discussed in the background section, the Mayo mechanism for self-initiated styrene polymerization gains strong support from experimental studies: the trapping experiments, the KIE studies, and the decomposition of azo compounds 4 and 5. The experimental results point to the key role of the AH intermediate and to the inadequacy of the 1,4-diradical in promoting styrene polymerization.

Computationally, the results are not as clear-cut. First, concerted pericyclic transition structures for the formation of AHx or AHn cannot be located, indicating that styrene dimerization is more energetically demanding than dimerization via a concerted Diels–Alder process. Second, the 1,4-diradical 'M_2' can ring-close to either the DCB or to AH, but both experiment and computations agree that the DCB dimers should be formed much faster than the AH dimers.\(^{39}\) Third, hydrogen abstraction from AH is predicted to be much more facile than hydrogen abstraction from 'M_2'. The question now becomes how can a diradical mechanism account for the formation of AH at a rate large enough to account for self-initiation and A-Sty formation?

Since transition-state theory predicts formation of diphenylcyclobutane will dominate, we were forced to consider the possibility that deviations from transition-state theory might be involved. Carpenter, Doubleday, and others have shown cases where dynamic considerations and deviations from transition-state theory influence products of reaction.\(^{40}\) We have explored in more detail whether dynamic effects might cause greater amounts of AH to be formed than would be expected from transition-state theory.

Scheme 6

1. An unexpectedly high ratio of AH versus DCB produced from the 1,4-diradical intermediate can be explained if the reactivity of the 1,4-diradical is influenced by its mechanism of formation. Theoretically, such phenomena will be observed when the rate of intramolecular vibrational energy redistribution of an activated intermediate is slower than the rate of reaction.\(^{40}\)

For example, the 'M_2'Gs can be formed from at least three distinct reactions (Scheme 6): (1) one-step formation via transition-state TS_{Gs}; (2) one-step formation via loss of N_2 from 4; and (3) multistep formation via transition-state TS_{Aa} followed by rotational transition states. Our hypothesis is that the mode of forming 'M_2'Gs will strongly influence which of the vibrational modes of the 1,4-diradical will have excess energy and thereby influence whether the 'M_2'Gs will ring-
close to cis-DCB, ring-close to AHx, cleave to styrene, or undergo additional rotations to generate other \(\text{M}_2^* \) conformers.

The UB3LYP contour energy plots in Figure 12 can be used to illustrate how dynamics might influence the reactivity of \(\text{M}_2^* \text{Gs} \). Plot 1 illustrates the conversion of two molecules of styrene into the AHx dimer, whereas plot 2 illustrates conversion into the cis-DCB dimer. In both plots, motion along the \(y \)-axis corresponds to formation of bond A, generating the \(\text{M}_2^* \text{Gs} \) intermediate. Motion along the \(x \)-axis corresponds to formation of bond B in plot 1 or bond C in plot 2.

According to the tenets of transition-state theory (TST), the ratio of AHx to cis-DCB is governed only by the relative barriers heights of \(\text{TS}_{2x} \) and \(\text{TS}_{\text{DCB}} \). When \(\text{M}_2^* \text{Gs} \) occupies a vibrational ground state (e.g., there is no “memory” for how the diradical was formed), TST would predict that AHx (pathway \(b \)) would be produced 60 times (based on \(\Delta H^\ddagger \)) faster than cis-DCB (pathway \(b' \)). However, if \(\text{M}_2^* \text{Gs} \) is generated with a nonstatistical distribution of vibrational energy, the rate of formation of AHx relative to cis-DCB would be altered. We predict that reaction 1, single-step formation of the 1,4-diradical via \(\text{TS}_{\text{1Gs}} \), is responsible for an enhanced rate of formation of AHx. This transition structure is more similar to \(\text{TS}_{2x} \) than to \(\text{TS}_{\text{DCB}} \) in structure and would therefore be more likely to excite the vibrations leading to AHx than to cis-DCB. The dynamic control would lead to the preference of pathway \(ab \) over \(ab' \).

For such an effect to be operative, the lifetime of the 1,4-diradical must be extremely short, effectively making the two-step diradical process into a two-phase, single-step process analogous to a concerted, if highly asynchronous, Diels–Alder reaction.

Other mechanisms that generate \(\text{M}_2^* \text{Gs} \), either \(\text{TS}_{\text{1At}} \) followed by various rotational transition states or by thermolysis of compound 4, are expected to produce the diradical without any predilection to favor the conversion of the 1,4-diradical into AHx.

II. Enhanced formation of AHx could also be due to dynamic effects prior to the formation of the 1,4-diradical intermediate. The concerted pathway (\(c \)) in Figures 12 and 13 is only slightly higher in energy than the diradical pathway (\(a \)) and, therefore, is still thermally accessible. In this scenario, two molecules of styrene approach in the \(\text{Gs} \) orientation, bond A and bond B form in a concerted but very asynchronous fashion such that the system never reaches the \(\text{M}_2^* \text{Gs} \) energy well. On the other hand, concerted formation of bonds A and C corresponds to a [2+2] cycloaddition (pathway \(c' \)) and is prohibitively high in energy. Consequently, a dynamic effect that bypasses formation of \(\text{M}_2^* \text{Gs} \) also increases the rate of formation of AHx relative to cis-DCB.

The energy differences between trajectories \(a, c, \) and \(c' \) are best illustrated in Figure 13, a side-view of the contour surfaces in Figure 12. The [2+2] pathway \(c' \) is \(\sim 20 \text{ kcal/mol} \) higher in energy than [4+2] pathway \(c \). The [4+2] pathway \(c \) is \(\sim 1 \text{ kcal/mol} \) higher in energy than the diradical pathway \(a \).

(41) Contour energy surfaces were also generated with R and UBPW91. They show the same general features as the plots in Figures 6 and 7.
Presumably, the dynamic effects described above are two extremes of the same phenomenon: initial trajectories of two styrene molecules in the G_s conformation are closely related to a Diels–Alder pathway, such that the shorter the lifetime of the $\gamma M^2 G_s$ intermediate, the more likely AHx will be the preferred cycloadduct. Analogous dynamic effects should also be possible for styrene molecules in the G_u conformation, where now the rate of AHn formation could be enhanced relative to the rate of trans-DCB formation. However, the energy differences between pathways to form AHn versus trans-DCB are larger than the energy differences between pathways to form AHx versus cis-DCB, therefore, we would predict that the dynamic rate enhancement of AHn formation is less effective.

Scheme 7

![Scheme 7](image)

Chain Transfer and Disproportionation. In the previous sections, we focused on the process of initiation and briefly touched on propagation. Here, we will briefly discuss chain transfer and termination, the two remaining processes involved in styrene polymerization (Scheme 7). Model reactions were calculated for comparison to the experimental rates (Table 2, Figure 14).

(42) The UB3LYP/6-31G* energy (no ZPE) of the TS_Gs is -619.256742 au. The UB3LYP/6-31G* single-point energy (no ZPE) of the concerted transition structure $AHx-\text{TS}_{dirad}$ is -619.255546 au.

Figure 13. Side-view of the contour surfaces in Figure 12. Plot 1 depicts the formation of AHx and plot 2 depicts the formation of cis-DCB. Pathway a corresponds to diradical formation of $\gamma M^2 G_s$, pathway c to a concerted $[4+2]$, and c' to a $[2+2]$ cycloaddition.

![Figure 13](image)

![Figure 14](image)

Figure 14. TSs for chain transfer from phenylethyl radical HM^+ to AH. Disproportionation TS of two phenylethyl radicals. B3LYP, B3LYP with spin projection (in parentheses), and BPW91 [in brackets] enthalpies in kcal/mol. Bond lengths are given in Å.

Chain transfer is a reaction in which a growing polymer radical abstracts an atom from a chain-transfer agent to produce a “dead” polymer and a new radical. If the new radical is reactive enough to reinitiate a new polymer chain, then the chain transfer has no effect on the rate of polymerization, and it reduces the molecular weight of the polymer. The efficiency of transfer is measured by a chain-transfer constant (C) which is the ratio of the transfer rate to the propagation rate.43

Chain transfer to AH can account for the observed changes in molecular weight of polystyrene as a function of percent conversion.3,44 At very low conversions, extremely high molecular weight polymer is obtained because of the low concentration of AH, whereas at higher conversions, the molecular weight of the polymer is reduced.

weight decreases and then plateaus as the AH concentration reaches its steady state. Knowing the activation energy for transfer of ethylbenzene is 12.8 kcal/mol15 and assuming the transfer constant for AH is 1.46 Pryor and Lasswell estimates the activation energy for transfer to AH to be 6.7 kcal/mol.3 B3LYP calculations on a model system, chain transfer from phenylethyl radical (eq 8) to AHn or AHx, predict that transfer has an activation enthalpy of ~6 kcal/mol and ~9 kcal/mol, respectively. The process of termination was modeled computationally with the combination and disproportionation of two phenylethyl radicals (eqs 9 and 10, respectively). A transition structure for combination could not be located using either B3LYP or BPW91 because there is no enthalpic barrier for σ-bond formation. However, a barrier on the free-energy surface would exist because the entropy decreases when the two radical species are brought together in the proper orientation. Transition structures for disproportionation were located with B3LYP; activation enthalpies of ~3–4 kcal/mol are found for this reaction in different conformations. The calculations are in reasonable agreement with the experimental ΔHf298K value of 2.2 kcal/mol.28

Conclusion

B3LYP/6-31G(d) and BPW91/6-31G(d) confirm that AH, the Diels–Alder styrene dimer, is the key intermediate for self-initiation of styrene polymerization. Scheme 8 summarizes our current understanding of the mechanism for styrene self-initiation, and the reactions highlighted in gray are necessary steps in the thermal polymerization.

The lowest energy pathway for reaction of two molecules of styrene is formation of the 1,4-diradical ‘M2’ via TS1, and the barrier (ΔHfB3LYP) for this reaction ranges from 25 to 27 kcal/mol, depending on the conformation in which the two molecules of styrene approach each other. Although the 1,4-diradical can adopt numerous anti and gauche conformations that are essentially isoenergetic (ΔHfB3LYP = 20–21 kcal/mol), the lifetime of the diradical is too short to achieve complete conformational equilibration or to react with a third molecule of styrene. Consequently, the diradical ‘M2’ is unable to undergo hydrogen abstraction (to product monoradicals) or propagation (to produce a growing polystyryl diradical). In the absence of any dynamic effects, the gauche 1,4-diradical undergoes very fast ring closure to DCB, effectively terminating the polymerization before it ever starts; the barrier (ΔHfB3LYP) for closure to cis-DCB is only +2.6 kcal/mol and the barrier to trans-DCB is even lower.

We predict that dynamic effects mirroring the concerted Diels–Alder pathway can override the very fast formation of DCB such that AH is formed at the expense of DCB. In the absence of additional styrene monomer, it is likely that the AH would revert to the diradical intermediate. However, in the presence of styrene, a third monomer can abstract hydrogen from AH via several possible conformations of TS1abs (ΔHfB3LYP = 23–24 kcal/mol), generating two benzylic monoradicals. The calculated free energies indicate that the abstraction is the rate-determining step, which corresponds to a third-order initiation. Both monoradicals A* and HM* are responsible for initiating polymerization, and the calculated barrier for propagation (TSmono) is ~7 kcal/mol.

AH can also undergo an ene reaction with styrene to generate inactive trimer A-Sty. The barrier TSene is lower than TS1abs. This is a reasonable prediction because the trimer component formed during polymerization is ~10 times larger than either the dimer or polymer component (see Table 1). Finally, AH can serve as a chain-transfer agent with a growing polystyrene chain. The facile transfer reaction simultaneously produces a dead polystyrene chain and generates additional initiator A*.

In general, B3LYP predicts higher barriers for the transition structures and deeper wells for the diradical intermediates. Experimental activation parameters are available for formation and disappearance of DCB, and B3LYP shows better agreement than BPW91 with these values.

Acknowledgment. We thank Prof. Roderic Quirk for many helpful discussions. We are grateful to the National Science Foundation for financial support of this research through a research grant to K.N.H. and a graduate fellowship to K.S.K. We also thank the National Computational Science Alliance under grant MCA93S015N and the UCLA Office of Academic Computing for computational resources.

Supporting Information Available: B3LYP/6-31G(d) and BPW91/6-31G(d) Cartesian coordinates, electronic energies, enthalpies, free energies, and entropies for all stationary points. Imaginary frequencies and (Ŝ) values for entries in Table 3 are also included. This material is available free of charge via the Internet at http://pubs.acs.org.

JA0448667