Origins of Boat or Chair Preferences in the Ireland-Claisen Rearrangements of Cyclohexenyl Esters: A Theoretical Study

Mahmood M. Khaledy, Mohammad Y. S. Kalani, Kelli S. Khuong, and K. N. Houk*
Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
Viktorya Aviyente
Chemistry Department, Bogazici University 80815, Bebek, Istanbul, Turkey
Reinhard Neier, Nicolas Soldermann, and J oerg Velker
Chemistry Department, University of Neuchatel, Av. De Bellavaux 51, CH-2000 Neuchatel, Switzerland
houk@chem.ucla.edu
Recei ved September 10, 2002

Abstract

The relative energies of the chair and boat transition states of a variety of Ireland-Claisen rearrangements were obtained by B3LYP/6-31G* calculations. Theoretical results are in good agreement with experimental data and provide a quantitative analysis of the origins of boat preferences that are observed in some of these reactions.

Introduction

The energetic preference for chair transition states (TSs) in [3,3]-sigmatropic shifts is one of the bedrocks of stereoselectivity predictions (Figure 1). Doering and Roth ${ }^{1}$ and Hill and Gilman ${ }^{2}$ el egantly demonstrated that the preference for a chairlike transition state in the acyclic Cope rearrangement is similar in magnitude to the chair-boat free energy difference in cyclohexane, about $6 \mathrm{kcal} / \mathrm{mol} .^{3}$ The Claisen rearrangement also exhibits a well-established, but smaller, preference for chairlike transition states. F or example, the stereoselectivity of the Claisen rearrangement of crotyl propenyl ether indicates that the energies of the chair and boat transition states differ by only $3 \mathrm{kcal} / \mathrm{mol}^{4}$

Computational evidence corroborates these experimental measurements. The Cope rearrangement of 1,5hexadiene was calculated to have an $11.4 \mathrm{kcal} / \mathrm{mol}$ preference for the chair transition state (using $(6,6)$ -CASPT2/6-31G*). ${ }^{5}$ This value is in excellent agreement with the measured difference of $11 \mathrm{kcal} / \mathrm{mol}$ for the activation enthalpy of the Cope rearrangement of 1,1-dideuterio-1,5-hexadiene (chair, $\Delta \mathrm{H}^{\ddagger}=33.5 \pm 0.5 \mathrm{kcal} /$ $\mathrm{mol}, \Delta \mathrm{S}^{\ddagger}=-13.8 \pm 1 \mathrm{eu}^{6}$) and that found indirectly for

[^0]

FIGURE 1. Chair and boat transition states of the Cope (X $\left.=\mathrm{CH}_{2}\right)$ and Claisen $(\mathrm{X}=\mathrm{O})$ rearrangements.
the boat $\left(\Delta \mathrm{H}^{\ddagger}=44.7 \pm 2.0 \mathrm{kcal} / \mathrm{mol}, \Delta \mathrm{S}^{\ddagger}=-3.0 \pm 3.6\right.$ eu^{7}). Woodward and H offmann proposed that the preference for chairlike geometries over boatlike geometries in [3,3]-sigmatropic shifts results from unfavorable secondary orbital interactions between orbitals on atoms 2 and 5 in the boat transition state. ${ }^{8}$

Despite the overwhelming evidence in favor of the chair transition state, occasional reports have surfaced of reaction stereoselectivities that are best explained by a boat transition state. One significant example is the Ireland-Claisen rearrangement of silyl ketene acetal systems, a particularly useful variation of the Claisen rearrangement. While the acyclic reactants show a small preference for the formation of products that are consistent with a chair transition state ${ }^{9}$ (Figure 2), rearrangements of cyclohexenyl silyl ketene acetals appear to

[^1]

FIGURE 2. Stereochemistries of Ireland-Claisen rearrangements of acyclic substrates.

$1\left(Z, 1: 2.6,60^{\circ} \mathrm{C}\right)^{9}$
$2\left(E, 5.3: 1,60^{\circ} \mathrm{C}\right)^{9}$

$6\left(\text { cis, } 1: 39,40^{\circ} \mathrm{C}\right)^{11}$
7 (trans, $1: 1.3,40^{\circ} \mathrm{C}$) ${ }^{11}$

$8\left(1: 21,125^{\circ} \mathrm{C}\right)^{10}$

$9\left(1: 1.7,125^{\circ} \mathrm{C}\right)^{10}$

FIGURE 3. Chair:boat stereoselectivities of Ireland-Claisen rearrangements of cyclohexenyl silyl ketene acetals. TBDMS = tert-butyldimethylsilyl.
involve either chair or boat transition states. Figure 3 summarizes results from the Ireland and Neier Iaboratories involving cyclohexenyl vinyl ethers. Throughout the discussion, the experimentally determined diastereoselectivities are interpreted as having a direct correlation with the relative stabilities of chair versus boat transition states in the Claisen rearrangement. Some cases are interpreted to favor boat transition states (1 and 6), others favor the chair (2 and 3), and others give no selectivity (4 and 7).

The chair and boat transition-state models proposed by Ireland and Neier are illustrated in essentially their original form, in Figure 4. ${ }^{9,10}$ For compounds 1 and 2, Ireland proposed that the cyclohexenyl moiety adopts a chair conformation (shown in $\mathbf{1 0}$ and 11) that is related to what we refer to later as "syn" since calculations show this chair to be flattened nearly to a half-chair conformation. In the syn-chair transition states of both 1 and 2, an unfavorable interaction between the silyloxy group and the axial $\mathrm{C}_{5} \mathrm{H}$ of the six-membered ring is present (10). The syn-boat transition state (11) relieves the steric interaction between the silyloxy and axial CH , but this

[^2]is replaced by a destabilizing repulsive interaction between the (E)-allylic methyl group and the axial ring proton. On the other hand, no repulsive interactions are present in the syn-boat TS of the Z isomer (not shown here). Experimentally, a chair transition state is preferred (5.3:1) for (E)-2, while a boat transition state is preferred (chair:boat $=1: 2.6$) for $(Z)-1$.
Ireland and Neier also studied more complex derivatives (3-5, Figure 3) that have an isopropenyl substituent on the cyclohexene ring. According to I reland, when the isopropenyl group is cis to the vinyl ether, the cyclohexenyl moiety is forced to adopt a boat conformation that we refer to later as "anti" (shown in 12 and 13). The anti conformation is favored for compounds 3 and 5 because it avoids severe interaction of an axially oriented isopropenyl group that would be present in a syn conformation. Experimentally, it was found that the cis isomers $\mathbf{3}$ and $\mathbf{5}$ prefer to undergo [3,3] shifts via chair transition states (12.5:1 and 1.8:1, respectively) while the trans isomer $\mathbf{4}$ prefers to react via a boat transition state (1:1.8). ${ }^{10}$
Neier also developed a new tandem Diels-Alder reac-tion/[3,3]-sigmatropic shift sequence involving butadi-enyl-substituted ketene acetals. ${ }^{10,11}$ Compounds 6 and 7 are the corresponding intermediates formed from endo and exo Diels-Alder reactions. The endo isomer 6 shows a large preference for a boat transition state (chair:boat $=1: 39$). The exo Diels-Alder product 7 rearranges unselectively (1:1.3). Neier proposed that, for the endo reactants such as 6, a half-chair arrangement is preferred for the cyclohexenyl moiety ($\mathbf{1 4}$ and 15 in Figure 4). F or the boat transition state, there is no repulsion between the ring proton of the cyclohexene and the bulky TBDMSO group, while there is severerepulsion between these in the chair transition state. ${ }^{11}$

These models and rationalizations raised interesting questions about the details of the transition structures of these reactions, and the quantitative significance of the interactions proposed. We have employed quantum mechanical methods to elucidate the effects of substituents on the chair and boat transition states, and specifically to understand the conformation of the cyclohexenyl moiety and its role in controlling stereoselectivity.

Results and Discussion

Calculations were carried out with Gaussian98 ${ }^{12}$ using the RB3LYP functional and the 6-31G* basis set. Vibrational analysis was performed at each stationary point to establish its identity as an energy minimum or a transition structure, and to obtain zero-point energy

[^3]

FIGURE 4. Previously proposed chair and boat transition-state models for the Ireland-Claisen rearrangements of cyclohexenyl silyl enol ethers.
corrections. This method has been found to give activation energies close to experimental results for [3,3]sigmatropic shifts such as the parent Claisen rearrangement and a variety of Cope rearrangements. ${ }^{13}$
Table 1 presents the computed energies of the four transition states (syn-chair, syn-boat, anti-chair, antiboat) for several Claisen rearrangements relevant to those studied by Ireland and Neier. The calculated transition states for cyclohexenyl ketene acetal (19; see Figure 5) serve as representative examples of the four possible conformations for the Claisen rearrangement. The B3LYP geometries are given al ong with line drawings in the conventional representation of chair and boat Claisen transition states. A methyl group is substituted for the TBDMS group that is generally used in the experiments. The optimized geometries in Figure 5 closely resemble the conformations proposed earlier by Ireland, 10-13 shown in Figure 4; the most notable exception is that only the CH_{2} is significantly out of the approximate plane of the other five carbons in the flattened six-membered chair. This moiety resembles the

[^4]half-chair transition state for a cyclohexane chair-to-boat ring flip; consequently, we use syn and anti to designate the position of the out-of-plane CH_{2} with respect to the Claisen transition-state moiety. The geometries of the cyclohexenyl moiety in Figure 5 involve a different halfchair conformation than the conformations that Neier proposed earlier (14 and 15).
For compound 19, the syn-boat transition state is lowest in energy (see Table 1 and Figure 5). The steric repulsion between the methoxy group and the axial CH at C_{5} is avoided in the syn-boat. There is repulsion between the methoxy group and the axial $\mathrm{C}_{5} \mathrm{H}$ in the synchair or axial $\mathrm{C}_{4} \mathrm{H}$ and $\mathrm{C}_{6} \mathrm{H}$ in the anti-chair; both transition states are $0.9 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the syn-boat.

Figure 6 shows the lowest energy transition states for model systems 20-24. Compound 20 is a simplified model for $\mathbf{1}$ and other reactants with a methyl group cis to the trialkylsiloxy in experimentally studied systems. Methoxy is substituted in the computational models. The conformation of the methoxy was explored for 13 of the transition states; in each case the conformer corresponding to the favored syn conformer of the ester product is usually $\sim 2 \mathrm{kcal} / \mathrm{mol}$ lower in energy than the conformer corresponding to the anti-ester.

TABLE 1. Computed Activation Barriers for Ireland-Claisen Rearrangements ${ }^{\text {a }}$

		 16-17 18-28				
compd	substituent	model for	$\Delta \mathrm{H}\left(\Delta \mathrm{H}_{\mathrm{rel}}\right)(\mathrm{kcal} / \mathrm{mol})$			
			chair			
16	$\begin{aligned} & \mathrm{X}=\mathrm{H} \\ & \mathrm{X}=\mathrm{OMe} \end{aligned}$		$\begin{aligned} & 26.6(0.0) \\ & 18.0(0.0) \end{aligned}$		$\begin{gathered} 36.9(10.3) \\ 20.3(2.3) \end{gathered}$	
17						
			syn-chair	anti-chair	syn-boat	anti-boat
18	$\mathrm{R}=\mathrm{H}$		28.9 (0.6)	28.3 (0.0)	29.8 (1.5)	31.2 (2.9)
19	$\mathbf{R}_{7}=\mathrm{OMe}$		22.9 (0.9)	22.9 (0.9)	22.0 (0.0)	23.7 (1.7)
20	$\mathbf{R}_{7}=\mathrm{OMe}, \mathrm{R}_{8 \mathrm{E}}=\mathrm{Me}$	1, 3, 4, 6, 9	21.8 (1.0)	22.0 (1.2)	20.8 (0.0)	22.2 (1.4)
21	$\mathbf{R}_{7}=\mathrm{OMe}, \mathrm{R}_{8 z}=\mathrm{Me}$	2, 5	24.2 (1.3)	22.9 (0.0)	25.1 (2.2)	24.3 (1.4)
22	$\mathbf{R}_{2}=\mathrm{Me}, \mathrm{R}_{7}=\mathrm{OMe}$	3, 5	23.4 (0.0)	23.5 (0.1)	23.5 (0.1)	25.0 (1.6)
23	$\mathbf{R}_{5 \mathrm{C}}=\mathrm{Me}, \mathrm{R}_{7}=\mathrm{OMe}$	3, 5, 9		23.4 (0.0)	27.4 (4.0)	24.0 (0.6)
24	$\mathbf{R}_{5 T}=\mathrm{Me}, \mathrm{R}_{7}=\mathrm{OMe}$	4,8	23.1 (1.0)	24.9 (2.8)	22.1 (0.0)	25.5 (3.4)
25	$\mathbf{R}_{6 \mathrm{C}}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}_{7}=\mathrm{OMe}$	6, 8	24.4 (2.0)	25.8 (3.4)	22.4 (0.0)	24.2 (1.8)
26	$\mathbf{R}_{6 \mathrm{~T}}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}_{7}=\mathrm{OMe}$	7,9	23.8 (1.1)	24.0 (1.3)	22.7 (0.0)	24.2 (1.5)
27	$\mathbf{R}_{2}=\mathrm{R}_{5 \mathrm{C}}=\mathrm{R}_{8 \mathrm{E}}=\mathrm{Me}, \mathrm{R}_{7}=\mathrm{OMe}$	3		(0.0)		(1.5)
28	$\mathbf{R}_{2}=\mathrm{R}_{5 \mathrm{~T}}=\mathrm{R}_{8 \mathrm{E}}=\mathrm{Me}, \mathrm{R}_{7}=\mathrm{OMe}$	4	(0.0)		(0.0)	

a Relative energies for each reaction are given in parentheses. The lowest energy transition state is shown in bold.

19 syn-chair

19 anti-chair

19 syn-boat

19 anti-boat

 lengths in Angstroms.

Calculations support Ireland's original proposal to explain why 1 exhibits a preference for a boat transition state. The syn-boat transition state of $\mathbf{2 0}$ avoids the destabilizing interactions between the cycl ohexenyl ring hydrogens and both the $\mathrm{R}_{7}-\mathrm{OM}$ and $\mathrm{R}_{8 E}-\mathrm{Me}$ groups. The syn-boat is favored over the syn-chair and anti-chair transition states by 1.0 and $1.2 \mathrm{kcal} / \mathrm{mol}$, respectively. By shifting the $\mathrm{R}_{8 \mathrm{E}}-\mathrm{Me}$ group to the $\mathrm{R}_{8 z}$ position (as in
compound 21), the boat versus chair preference is reversed. The syn-boat transition state is destabilized by repulsion between the $\mathrm{R}_{8 z}-\mathrm{Me}$ and $\mathrm{C}_{5} \mathrm{H}$; consequently, the anti-chair transition state is 1.4 and $2.2 \mathrm{kcal} / \mathrm{mol}$ lower in energy than the anti-boat and syn-boat transition states. The preference of $\mathbf{2 1}$ for a chair transition state matches I reland's observation that 2 primarily undergoes the Claisen rearrangement via a chair conformation.

20 syn-boat

21 anti-chair

22 syn-chair

23 anti-chair

24 syn-boat

FIGURE 6. Preferred B3LYP/6-31G* transition states for systems 20-24.

Ireland's and Neier's experimental results for $\mathbf{3}$ are consistent with chair:boat transition state ratios of 9:1 and $12.5: 1$, respectively. ${ }^{9,10}$ Compound 3 , which is substituted at $R_{2}, R_{5 c}$, and $R_{8 E}$, is significantly more complicated than $\mathbf{1}$ or $\mathbf{2}$, because two additional substituents have been added to the cyclohexenyl ring. To clarify the relative importance of these substituents on the preference for a chair transition state, we performed calculations on individual model systems that included only one substituent. The relevant model systems for $\mathbf{3}$ are $\mathbf{2 0}$ ($\mathrm{R}_{8 \mathrm{E}}-\mathrm{Me}$, discussed above), $\mathbf{2 2}$ ($\mathrm{R}_{2}-\mathrm{Me}$), and $\mathbf{2 3}$ ($\mathrm{R}_{5 \mathrm{c}}-\mathrm{Me}$).

For 23, a methyl group was used to model the effect of the isopropenyl substituent at $\mathrm{R}_{5 \mathrm{c}}$. With a cis- C_{5}-methyl, both syn conformations are dramatically disfavored because the methyl group is forced to adopt an axial orientation. In fact, the syn-chair transition state cannot be located, because the axial C_{5}-methyl is too close to the methoxy substituent. On the other hand, the anti-chair and anti-boat conformations relieve the strain introduced by an axial methyl group and differ by only $0.6 \mathrm{kcal} / \mathrm{mol}$. For model system 22 (in which a C_{2}-Me is present on the cyclohexenyl ring), the anti-boat transition state is approximately $1.5 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the remaining three transition states. Now, combining the substituent information provided by systems $\mathbf{2 0}, \mathbf{2 2}$, and 23, we conclude that the R_{2}-Me leads to a strong preference for a chair conformation, outweighing the small preference for the boat produced by the $\mathrm{R}_{8 \mathrm{E}}-\mathrm{Me}$. This supports the experimental observation that $\mathbf{3}$ undergoes the Claisen rearrangement preferably via a chair transition state. The prediction that the anti-chair conformation should be the most favorable is further confirmed by $\mathbf{2 7}$, in which all three substituents are present in the same system.

In the case of compound 4, Neier showed that the reaction is relatively unselective; a boat transition state is preferred by a ratio of only 1.8:1. The only difference between $\mathbf{3}$ and $\mathbf{4}$ is the placement of the C_{5}-methyl group. For this system, C_{5}-methyl is in the trans position, and the relevant substituent effects are modeled by 20 ($\left.\mathrm{R}_{8 \varepsilon}-\mathrm{Me}\right)$, $\mathbf{2 2}\left(\mathrm{R}_{2}-\mathrm{Me}\right)$, and $\mathbf{2 4}\left(\mathrm{R}_{5 \tau}-\mathrm{Me}\right)$. The $\mathrm{R}_{5 c}-$ Me group strongly favors anti conformations because the axial methyl orientation can be avoided, and the $\mathrm{R}_{\text {т }}-\mathrm{Me}$ strongly favors syn conformations for the same reason. Consequently, the $\mathrm{R}_{5 T}-\mathrm{Me}$ reinforces the $\mathrm{R}_{88}-\mathrm{Me}$ substituent effect in favoring the syn-boat transition state. When all three substituent effects are combined in
system 28, the syn-chair and syn-boat transition states are nearly isoenergetic, in accord with the lack of selectivity seen in the experimental example.

In analyzing the results for 5, the model systems 21 $\left(\mathrm{R}_{8 z}\right)$, 22, and $\mathbf{2 3}$ should be considered. Both 21 and 23 prefer the anti-chair conformation, while $\mathbf{2 2}$ has nearly equal preference for the syn-chair, anti-chair, and antiboat conformations. Experimentally, $\mathbf{5}$ is found to be unselective; the experimentally observed ratio (1.8:1) is interpreted as a slight preference for a chair relative to a boat transition state. Although the calculations on the model systems do correctly predict the preference for a chair transition state, they do not fully account for the lack of selectivity observed in this system.

Model systems 20 ($\mathrm{R}_{86}-\mathrm{Me}$) and $\mathbf{2 5}$ ($\mathrm{R}_{6 \mathrm{c}}-\mathrm{CO}_{2} \mathrm{Me}$) are relevant to compound 6. Results for $\mathbf{2 5}$ illustrate that syn conformations of the cyclohexenyl ring allow the methoxycarbonyl group to adopt an equatorial position. The syn-boat transition state of $\mathbf{2 5}$ is $2.0 \mathrm{kcal} / \mathrm{mol}$ Iower in energy than the syn-chair because the R_{T} - OM e group avoids steric interference with the axial hydrogens $\left(\mathrm{C}_{5} \mathrm{H}\right)$ of the cyclohexenyl moiety. The additional effect of the $\mathrm{R}_{8 E}-\mathrm{Me}$ group (see 20) further enhances the preference for the syn-boat conformation, confirming the experimental observation that $\mathbf{6}$ has a large preference for rearrangement by a boat transition state (chair:boat $=1: 39$).

Compound 7, which is the least selective of the compounds studied experimentally, is modeled by 20 and 26. Both $\mathbf{2 0}$ and $\mathbf{2 6}$ favor the syn-boat transition state. Similar to 5, the calculations on the model systems do correctly predict the preference for a boat transition state, but do not fully account for the lack of selectivity observed in this system.

In 8, model systems 20, 24, and $\mathbf{2 5}$ show that there is a significant additive preference for the syn-boat transition state. The syn conformation of the cyclohexenyl ring allows the $\mathrm{R}_{5 T}-\mathrm{CO}_{2} \mathrm{Et}$ and $\mathrm{R}_{6 \mathrm{c}}-\mathrm{CO}_{2} \mathrm{Et}$ to be oriented in an equatorial fashion. As in many of the examples discussed above, the boat conformation effectively minimizes steric crowding of the $\mathrm{R}_{7}-\mathrm{OMe}$ and $\mathrm{R}_{8 E}-\mathrm{Me}$ with the cyclohexenyl ring substituents. The large preference for the syn-boat transition state matches the high chair:boat selectivity ($1: 21$) observed experimentally for 8.

For 9, our models (20, 23, and 26) predict a slight preference for the syn-chair transition state relative to

syn-chair

anti-chair

syn-boat

FIGURE 7. Substituents that favor various transition states.
the syn-boat or anti-boat, whereas a slight preference for the boat is experimentally observed (1:1.7).

The model that emerges from these calculations is a hybrid of that proposed by Ireland and by Neier. Figure 7 shows idealized transition-state models and the substituent patterns that favor a particular transition-state geometry. The cycl ohexenyl system inherently favors the anti-chair, and in the absence of a substituent at C_{2}, the anti-chair and syn-boat tend to be the lowest energy transition states. Addition of a C_{2} substituent imposes a chair preference, and selectivity becomes especially high when the anti-chair is favored by a cis C_{5} group. With a trans C_{5} group, the syn conformation becomes more favorable, which destabilizes the chair transition state
and leads tolow selectivity among the syn-chair and synboat transition states.

Conclusion

The quantum mechanical calculations on model systems have provided explanations of the stereoselectivities of Ireland-Claisen rearrangements of cyclohexenyl silyl enol ethers. Four transition states are generally found, with chair or boat conformations involving the allyl and allyloxy moieties of the transition state, and either syn or anti arrangements of the half-chair cyclohexenyl moiety. Substituents on the cyclohexenyl ring may alter the preference for syn or anti transition states; steric interactions between groups on the allyloxy moiety and the cyclohexenyl ring influence whether the inherently preferred chair, or a sterically favored boat, is favored.

Acknowledgment. We are grateful to the National Institute of General Medical Sciences, National Institutes of Health (FIRCA (Grant TW01318) and R01 (Grant GM36700)), the Stone Research Stipend, and Pfizer, Inc. (SURF Fellowship to M.M.K.) for financial support of this research.

Supporting Information Available: Computer printout. This material is available free of charge via the Internet at http://pubs.acs.org.
J O020595B

[^0]: * To whom correspondence should be addressed. Fax: (310) 2061843.
 (1) Doering, W. v. E.; Roth, W. R. Tetrahedron 1962, 18, 67-74.
 (2) Hill, R. K.; Gilman, N. W. Chem. Commun. 1967, 619-620.
 (3) (a) Allinger, N. L.; Freiburg, L. A. J. Am. Chem. Soc. 1960, 82, 2393-2394. (b) J ohnson, W. S.; Bauer, V. J.; Margrave, J. L.; Frisch M. A.; Dreger, L. H.; Hubbard, W. N J . Am. Chem. Soc. 1961, 83, 606611.
 (4) (a) Vittorelli, P.; Winkler, T.; Hansen, H. J.; Schmid, H. Hedv. Chim. Acta 1968, 51, 1457. (b) Vittorelli, P.; Hansen, H. J.; Schmid, H. Helv. Chim. Acta 1975, 58, 1293. (c) Vance, R. L.; Rondan, N. G.; Houk, K. N.; J ensen, F.; Borden, W. T.; K omornicki, A.; Wimmer, E. J.Am. Chem. Soc. 1988, 110, 2314.
 (5) Hrovat, D. A.; Borden, W. T. J . Am. Chem. Soc. 2001, 123, 40694072.

[^1]: (6) Doering, W. v. E.; Toscano, V. G.; Beasley, G. H. Tetrahedron 1971, 27, 5299.
 (7) (a) Goldstein, M. J.; Benzon, M. S. J. Am. Chem. Soc. 1972, 94, 5119. (b) Goldstein, M. J.; Benzon, M. S. J . Am. Chem. Soc. 1972, 94, 7147.
 (8) H offmann R.; Woodward, R. B. J . Am. Chem. Soc. 1965, 87, 395.
 (9) Ireland, R. E.; Wipf, P.; Xiang, J . J . Org. Chem. 1991, 56, 3572-
 (8) H offmann R.; Woodward, R. B. J . Am. Chem. Soc. 1965, 87, 395.
 (9) Ireland, R. E.; Wipf, P.; Xiang, J . J . Org. Chem. 1991, 56, 35723582.

[^2]: (10) Neier, R. Unpublished results.

[^3]: (11) Velker, J.; Roblin, J. P.; Neels, A.; Tesouro, A.; Evans, H. S.; Klaerner, F. G.; Gehrke, J. S.;' Neier, R. Synlett 1999, S1, 925-929.
 (12) Gaussian 98, Revision A.9: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; M ontgomery, J. A., J r.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J . M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; M orokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J . B.; Cioslowski, J.; Ortiz, J . V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; AI-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; J ohnson, B.; Chen, W.; Wong, M. W.; Andres, J . L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A., Gaussian, Inc., Pittsburgh, PA, 1998.

[^4]: (13) (a) Wiest, O.; Black, K. A.; Houk, K. N. J. Am. Chem. Soc. 1994, 116, 10336-10337. (b) Y oo, H.-Y.; Houk, K. N. J. Am. Chem. Soc. 1997, 119, 2877-2884. (c) Hrovat, D. A.; Chen, J .; Houk, K. N.; Borden, W. T. J. Am. Chem. Soc. 2000, 122, 7456-7460.

