CHEMISTRY 301
11:15 AM Section
EXAM 2
27 Oct 2010

Name: \qquad

Note: Your exam should consist of 5 pages including the cover page and grade tabulation sheet. Skim the entire exam, and solve the easiest problems first. Exams not returned when time is called will not be graded.

Copyright © 2003 Calitornia Department of Education

PLEASE DO NOT OPEN THIS EXAM UNTIL YOU ARE INSTRUCTED TO DO SO.

1. (9 pts) Draw cyclopropane and cyclopropene. Predict whether cyclopropane or cyclopropene has the greater (more exothermic) heat of combustion. Clearly explain what is giving rise to the difference in their heats of combustion.
2. (18 pts) There are four possible cis,trans isomers of 2-isopropyl-5-methylcyclohexanol in which the C_{1} of the cyclohexane ring has R stereochemistry. (a) Using a planar hexagon representation of the cyclohexane ring, draw the structures of the four isomers. (b) Draw the more stable chair conformation for each of your answers in part a. (c) Of the four cis,trans isomers, which is the most stable.
3. (10 pts) (a) Draw a Newman projection for each staggered conformation of the $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond of $1,2-$ dichloropropane, in order of least stable to most stable from left to right. (b) Briefly explain how you arrived at the order of stability.

least stable

most stable
4. (15 pts) Which of the following molecules are chiral? Assign each chirality center in the structures below as R or S.

chiral / achiral

b. chiral / achiral

c. chiral / achiral
a.
5. (4 pts) Mandelic acid can be purchased as the (S)-(+) enantiomer. Complete the Fischer projection for this enantiomer of mandelic acid.

mandelic acid

6. (6 pts) Draw a 3D representation of the half-chair conformation, and clearly annotate the origin of its instability.
7. (10 pts) Write the full IUPAC name for each of the following molecules.
A

B

8. (7 pts each) Indicate whether each of the following pairs of compounds are non-isomeric, constitutional isomers, identical (but not conformers), conformers, enantiomers, or diastereomers. Then decide whether a 50:50 mixture of each pair would rotate plane polarized light and briefly explain why or why not.
a.

Likely to rotate plane-polarized light?
Reason for your yes/no choice.
b.

Likely to rotate plane-polarized light?
Reason for your yes/no choice.
c.

Likely to rotate plane-polarized light?

Reason for your yes/no choice.
d.

Likely to rotate plane-polarized light?

Reason for your yes/no choice.

CHEMISTRY 301

11:15 AM Section
EXAM 2
27 Oct 2010

Name:

Page	Points	Score
2	27	
3	35	
4	38	
Total	100	

