Microscale Mechanics of triggered bundling and unbundling of actin networks

Bekele Gurmessa¹, Leila Farhadi², Michael Rust⁴, Moumita Das³, Jennifer Ross², Rae M. Robertson-Anderson¹

¹Department of Physics and Biophysics, University of San Diego, San Diego, USA
²Department of Physics, University of Massachusetts, Amherst, USA
³Rochester institute of technology, school of Physics and Astronomy, NY, USA
⁴University of Chicago, Department of Molecular genetics and cell biology, Chicago, IL, USA
Diverse cellular processes require active reorganization of actin networks

Polymerization

\[\text{+ATP} \quad -\text{Ca}^{2+} \]

Contraction

\[\text{+Myosin II} \quad +\text{ATP} \]

Crosslinking

\[+\text{binding proteins} \]

Bundling

\[+\text{high MgCl}_2 \]
How do the mechanical properties of actin networks vary during active re-organization?

Polymerization

- +ATP
- -Ca$^{2+}$

Contraction

- +Myosin II
- +ATP

Crosslinking

- +binding proteins

Bundling

- +high MgCl$_2$
How do varying salt conditions affect the mechanics and morphology of actin networks?

Bundling

+ high MgCl$_2$

Entangled filaments

Low salt

Highly bundled network

High salt
We use microfluidic chambers to cyclically vary the salt concentration in actin networks in situ.

We use microfluidic chambers to cyclically vary the salt concentration in actin networks in situ.
We track thermal fluctuations of optically trapped beads to determine mechanical properties of actin networks.

Bead trajectory

NMSD, $\Pi(\tau)$

Generalized Langevin equation

The elastic modulus displays a delayed increase with increasing salt concentration.

Stiffening continues well after [MgCl$_2$] stops increasing.
The entanglement plateau extends to higher frequencies as bundling increases.
As we reverse salt concentration back to initial levels, signatures of irreversible bundling emerge.

Steady-state network mechanics depend on the history of the network.
Irreversible bundling leads to stiffer low salt networks with more persistent entanglements.

Steady-state network mechanics depend on the history of the network.
The dynamic mechanics of bundling and de-bundling actin networks display hysteresis and irreversibility.
The dynamic mechanics of bundling and de-bundling actin networks display hysteresis and irreversibility.
Actin network mechanics *encode memory* of previous state & display *delayed response* to environmental changes.
Thank you to funding sources and collaborators

NSF CAREER Award no. 1255446

Jennifer Ross, University of Massachusetts

Michael Rust, University of Chicago

Leila Farhadi, University of Massachusetts

Mounita Das, Rochester Institute of Technology