Actin crosslinker density tunes mesoscale mechanics of actin-microtubules composites

Shea Ricketts1, Madison Francis1, Leila Farhadi2, Jacob Wales3, Michael Rust4, Moumita Das3, Jennifer Ross2, Rae Robertson-Anderson1

1University of San Diego, Department of Physics and Biophysics, San Diego, CA, USA
2University of Massachusetts Amherst, Department of Physics, Amherst, MA, USA
3Rochester Institute of Technology, School of Physics and Astronomy, Rochester, NY, USA
4University of Chicago, Department of Molecular Genetics and Cell Biology, Chicago, IL, USA
Actin and microtubules form interacting networks in the cytoskeleton

Dugina et al. (2016). Oncotarget, 7(45).

Ricketts. (2019).

Rankin et al. (2010). Journal of Cell Biology, 190(1).

Actin crosslinking serves roles in various processes

Morphogenesis

Migration and Adhesion
Higashibata et al. (2006). *BMC biochemistry, 7*(1).

Growth

Division
Burnette. (2016)
The mesoscale mechanics of actin-microtubule composites shows non-monotonic dependence on actin crosslinker density.
We create equimolar actin-microtubule composites with permanent actin crosslinks

We vary the actin crosslinker density in actin-microtubule composites.

Increasing Crosslinker Density, R

- $R = 0$
- $R = 0.02$
- $R = 0.04$
- $R = 0.08$
We use optical tweezers to measure the local force response of composites.
The resistive force shows surprising *non-monotonic* dependence on crosslinker density.
The resistive force shows surprising non-monotonic dependence on crosslinker density.
Composite stiffness also shows surprising non-monotonic dependence on crosslinker density.
All composites exponentially dissipate force following strain.
$R = 0.02$ composites exhibit the slowest relaxation mechanisms over all timescales.
The degree of force dissipation displays non-monotonic dependence on crosslinker density.
Actin bundling at higher crosslinking densities increases the composite mesh size.
Non-monotonic dependence of mechanics on actin crosslinking arises from actin bundling at higher density.
Here’s everyone who contributed to this work!

Rae Robertson-Anderson
Jenny Ross
Shea Ricketts
Maddy Francis
Leila Farhadi

Michael Rust
Moumita Das

Thanks to our funding sources!

NIH
National Institute of General Medical Sciences
NSF
W. M. Keck Foundation