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Abstract— Fault-tolerance is one of the major challenges facing
nanoelectronic systems. Previous defect-tolerance techniques have
focused on offline testing and are ill-suited for handling device
death. We propose a fault-tolerance scheme for nanoelectronic
PLAs that is based on checkpointing. With low overhead, our
scheme is able to test and diagnose crosspoint faults that may
appear in the PLA during its operational lifetime. We also present
a new test vector compaction algorithm that significantly reduces
the number of test vectors. This new algorithm takes advantage
of the density and reconfigurability of nanoelectronic circuits by
raising the granularity of defect diagnosis to the row/column level.
We are therefore able to reduce the number of test vectors to
O(n+p) for a PLA with n input and p product lines without
sacrificing diagnosability. Experimental results show that our
checkpointing scheme, together with the compaction algorithm,
tolerates a much higher fault rate than previously possible.
Index Terms — PLA, testing, fault-tolerance, checkpointing, nano-
electronics

I. INTRODUCTION

As CMOS continues to scale down towards its physical lim-
its, nanoelectronic devices have continued to make progress as
a possible alternative or complement technology. Researchers
have already succeeded in making diodes and two-terminal
transistors out of crossed sets of carbon nanotubes (CNT)
and silicon nanowires (SNW) [1], [2]. Systems built on
these crossbar-based nanoelectronic circuits have already been
proposed [3], [4], [5], [6], [7], [8], [9], [10]. Nanoelectronic-
based circuits offer the potential for device densities that are
orders of magnitude higher than CMOS.

However, unlike traditional CMOS circuits, which have
been fabricated with precise top-down lithographic methods,
nanoelectronic circuits are expected to rely upon a bottom-
up self-assembly. This new approach to fabrication will lead
to higher rates of defects due to its imprecise nature. When
defect levels are low enough, as has traditionally been the
case with CMOS, simply discarding defective chips will still
lead to acceptable yield. With defect rates as high as 10%, as
has been predicted for nanoelectronic devices, a new strategy
is needed. Luckily, the low-overhead reconfigurability that is
intrinsic to many electronic devices provides a new way to
approach fault-tolerance. By adding diagnosis to our testing
procedure we may uncover which devices are defective and
reconfigure our circuit to avoid these defects.

Previous approaches to defect-tolerance in nanoelectronic
circuits have mainly dealt with defects that are present at
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manufacturing time [11], [12], [13], [14], [15], [16]. While
testing and diagnosing these defects are an important part
of circuit configuration, it does not deal with the problem
of device death.! Dealing with device death presents new
challenges for defect-tolerance. In the online testing envi-
ronment, we must not interfere with the circuit’s normal
operation. Previous approaches relied on frequent, intrusive
reconfiguration, which makes them unsuitable for online use.
Furthermore, in order to avoid data corruption, the speed of test
and diagnosis is of heightened importance. The high-fault rate
of the nanoelectronic environment would severely limit online
approaches like that in [17] because of the long test times
involved. Finally, if we are to maintain the advantage in device
density that nanoelectronics affords us, hardware overhead is
also a major concern. The work in [18] addresses online test in
nanoPLAs and is able to maintain uptime and have quick fault
diagnosis. However, this approach requires a large overhead
and makes special assumptions about the observability of
different parts of the PLA. The work presented effectively
deals with all three challenges of the online environment:
uptime, diagnosis speed, and hardware overhead.

In this work we develop a fault-tolerance scheme for
nanoelectronic PLAs (nanoPLAs) that is based on checkpoint-
ing. Compared to traditional hardware-redundancy schemes,
it achieves arbitrarily low overhead by partitioning the PLA
blocks into test groups and designating two blocks to act as
surrogates. Testing happens concurrently with normal oper-
ation of the system, allowing for the maximum amount of
uptime for the system. Upon detection of a defect, rollback
allows us to return to a previously saved state and avoid
data corruption. In order to minimize the rollback distance,
we introduce a test generation algorithm that provides a
compact set of test vectors that detects 100% of crosspoint
faults. Our algorithm leverages the abundant resources of
the nanoelectronic environment and decreases the diagnos-
tic accuracy—from crosspoints to rows/columns—in order
to achieve a more compact set of test vectors. Compared
with the PLA diagnosis approaches in [19], [20], our test
generation and compaction algorithm has much faster speed
(O(n+p) compared with O(n+m)p)) while steering clear of

!Device death is the permanent disablement of a device during its operation.
Defect maps formed during pre-operational testing will not include these types
of defects.
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Fig. 1. Test group with five PLA blocks. A * indicates a block is undergoing

testing.

any unrealistic assumptions about defect-free lines or access
mechanisms to the PLA.

The layout of this paper is as follows. First, in Section
IT we briefly describe the nanoPLA that we have targeted.
We start the discussion of our proposed solution in Section
III when we describe our checkpoint scheme. We follow this
with a description of our method of test vector generation.
We present experimental results in Section V, showing the
effectiveness of our test vector generation in minimizing the
number of required test vectors. We also show the effectiveness
of the overall checkpointing scheme in tolerating device death.
Finally, we conclude in Section VI.

II. NANOELECTRONIC PLA OVERVIEW

In this section we will give a brief overview of the nanoPLA
environment which we are targeting. We assume that the
system consists of a number of logic cells which we refer
to as PLA blocks. Furthermore, each of these PLA blocks
consists of a nanoelectronic crossbar structure with n input, p
product, and m output lines (we will use the notation (n, p, m)
to describe the dimensions). Logically these PLA blocks may
appear to be of smaller size as we will designate several
lines as spares to be used in repairing defects. As with the
crossbar structures described in [1] and [2], the crosspoints
of these nanowires are electronically configurable so that it
is possible to reconfigure them easily by applying the correct
voltage bias. Sequential circuit elements may be implemented
in nanoelectronic crossbar memories that use replication or
error correcting codes for fault-tolerance.

We assume that the system has a rich interconnect structure
consisting of both CMOS and nanowires, such as the system
developed in [16]. An interface similar to the one developed
in [21] allows us to control and observe the inputs and
outputs of the PLA blocks by utilizing micro-to-nanoscale
decoders. Using either fault-tolerant nanoscale memory or the
CMOS/nano interface, we will be able to apply a set of test
vectors to the PLA blocks. Checkpointing and rollback, as
described in III, will need to be coordinated by a system-wide
controller implemented in the more reliable CMOS substrate.

I1I. CHECKPOINT SCHEME

Checkpointing is a traditional technique used for handling
errors [22]. Checkpoints are consistent states in the operation

of a system. Upon detection of an error, we may rollback to
the most recent checkpoint and continue execution. Because
checkpoints represent safe points during our operation, we
must ensure that all PLA blocks in the system have been thor-
oughly tested before generating a new checkpoint. However,
because complete test and diagnose requires control over the
inputs to the PLA block, normal operation of this block must
be suspended. If we wish to maintain forward progress for
the system, another PLA block must act as a surrogate during
testing. This surrogate will implement the same functionality
as the block under test (BUT). Because they represent over-
head for testing, we would like to minimize the number of
blocks that are concurrently under test. Unfortunately, as we
decrease the number of BUTs we also increase the amount of
time needed to test all of the blocks in the system. We are
thus presented with a trade-off between speed and overhead.
However, further complicating the matter is that fault rates
may not be constant. At time ¢; the fault rate may be low
enough to allow for a small number of BUTs while at another
instant, to, fault rates may increase so that quicker detection
is necessary. In order to handle this case, we have developed
a checkpointing scheme that involves fest groups.

A. Test Groups

Our proposed checkpoint scheme revolves around the idea
of a test group. A test group is simply a grouping of N PLA
blocks, two of which are designated as surrogates. Figure
1 shows a simple test group formed with five PLA blocks.
Blocks P1 through P3 implement PLA functions denoted as
A, B and C while P4 and P5 are the designated surrogates of
the group. At any time during operation, one of the (N — 2)
non-surrogate blocks (which we will refer to as P;) will be in a
testing state while the other non-surrogate blocks are operating
normally. While P, is being tested, one of the surrogates will
be configured to implement P,’s normal functionality. This
will allow complete functionality at all times. After P, finishes
its testing, one of the other non-surrogate blocks is selected
and it then becomes the BUT. The block that will be the
BUT is chosen in a round-robin manner so that all other non-
surrogate blocks are tested before P, undergoes testing again.
We add a second surrogate to the test group so that the first
surrogate may also be tested for defects.

Time is divided into multiple festing epochs. During a
single testing epoch, one of the PLA blocks in the test group
will undergo complete testing for all meaningful crosspoint
faults. We classify a crosspoint fault as being meaningful if it
will affect the output of the PLA. Conversely, we can safely
ignore meaningless faults such as stuck-open faults on unused
crosspoints or stuck-closed faults on used crosspoints. After
the conclusion of a testing epoch, another block is put under
test and another epoch begins. As stated earlier, before a block
can be tested for a second time, all other blocks in its test
group must also be tested. Figure 1 shows the progression of
test epochs. In epoch 1, P1 undergoes testing while P4 acts
as a surrogate by implementing configuration A. Epoch 2 sees
P2 undergo testing while P5 implements its functionality and
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P4 also tests itself.

While Figure 1 shows only one test group, in a system with
many PLA blocks, the blocks will be divided into multiple
test groups. It is not necessary that these groups remain the
same indefinitely. As we alluded to earlier, differing fault rates
may change the maximum test group size that is possible.
In Section III-C we also discuss another way in which the
flexibility to change test group size is beneficial.

B. Generating Checkpoints

At the end of each testing epoch, we gain some new
information about the state of the system. If the test did not
uncover any defects, then we can conclude that no erroneous
data has been generated by defects since the last time this
block was tested. However, we have no such assurances about
other PLA blocks. It is possible that another defective block
is producing incorrect data which is poisoning the rest of the
system. Therefore, if we generate a checkpoint at the end of
a testing epoch, it is only a fentative checkpoint. We cannot
rollback to tentative checkpoints because they may involve
incorrect data.

For a checkpoint to be considered a safe checkpoint, we
need to be assured that the blocks that weren’t being tested
during this epoch were not defective. We must therefore wait
until all other blocks have been tested before we can conclude
that the checkpoint is safe. Our choice of a round-robin
selection of BUTs provides us with an important property:
only (N — 3) clean tests are needed before a tentative check-
point can be considered safe. We therefore only need to save
(N —2) checkpoints at any time. The oldest checkpoint will
be the safe checkpoint while the others will be tentative. When
doing rollback, our rollback distance will always be limited to
(N — 2) test epochs.

The length of a test epoch will be equal to the time required
to completely test and diagnose the BUT for that epoch. While
the expected mean time to failure (MTTF) will dictate how
often rollback occurs, the size of the test epochs will ultimately
determine what percentage of computations are wasted while
recovering from a failure. Unlike traditional checkpointing
systems where the distance between checkpoints is a matter
of the extent of the performance overhead one is willing to
accept, checkpointing is intimately tied to the testing epochs.
In Section IV we will discuss a method for shortening the time
required to completely test a PLA block.

C. Rollback Recovery

At the end of a testing epoch, if a defect is detected, then the
rollback-recovery mechanism is initialized. First, the defective
PLA block(s) must be repaired to ensure future error-free
operation. Because the output of our diagnosis (as described
in Section IV) indicates which rows/columns are defective,
repair is simply a matter of reconfiguring a spare row/column
in the PLA to act as the defective row/column. After this
reconfiguration is complete, the system rolls back to the most
recent safe checkpoint.

In order to roll back the system to an earlier time, our
checkpoints must accurately capture the state of the system.

Because a PLA is a strictly combinational circuit, it holds no
internal state. Therefore, to restart a PLA at a specific instant
in time (e.g. at the end of epoch 1), we only need to know the
inputs to the PLA at that time. However, the inputs to the PLA
may come from two different sources: primary inputs or the
outputs of other PLA blocks. In the former case, we do not
need to save any additional data since we have access to the
primary inputs. In the latter case, we must save the output(s)
of the other PLA block(s). When generating a checkpoint, we
will therefore only need to save a subset of the inputs to a
block, namely those emanating from other blocks.

Since a checkpoint consists only of the output of PLA
blocks, these outputs could be routed to a fault-tolerant nano-
electronic memory or the more reliable CMOS substrate. In
this case, rollback recovery will require that routing resources
be configured so that the information in the checkpoints
is guided to the correct destination. Alternatively, we can
simplify recovery by adding several rows to the output of
each PLA block. When a checkpoint occurs, the voltage on
one of these rows will be set so that the values on the output
wires are programmed into that row. When rollback recovery
is initiated, the row that contains the safe checkpoint will be
read so that all intermediate results are immediately passed
to the correct destination. Conversely, to avoid the overhead
of adding extra rows to the output, spare rows from the AND
plane can be programmed and read in a similar way. However,
to insure the integrity of checkpoints stored in the unreliable
nano substrate, additional fault tolerance would need to be
employed (such as comparing this checkpoint with one stored
in the reliable nanomemory or CMOS).

While we expect there to be ample spare resources available
to help recover from faults, after a long operational lifetime it
may be that a PLA block runs out of extra rows and columns.
In this case, rollback becomes complicated since we must do
more than simply restore the previous checkpoint. Luckily,
our checkpointing scheme can use several options to continue
operating normally in the face of dwindling spare resources.

One option is to reconfigure the block with the same
functionality but a different mapping of rows and columns.
This option would work well if the PLA is sparsely populated.
Unfortunately, a large number of defects or a high degree
of crosspoint utilization may make this option unattractive.
A similar option would be to try to reconfigure the PLA
into its original state. Because a crosspoint toggle caused by
a transient fault has the same effect as a permanent fault,
our scheme might incorrectly classify a row/column as being
defective. By reconfiguring into the original PLA state, we
may find that a fault was not permanent and therefore the
row/ column does not need replaced.

A third option would be to repartition the PLA blocks into
new test groups. The new partitioning would avoid the use
of the PLA block that was just retired. In order to do this,
we would need to have an extra PLA block available that was
previously unused. If the circuit does fully not use all the PLA
blocks available on the chip, finding an extra PLA block would
simply be a matter of picking one from a set of spares. If there
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are no spare PLA blocks—either from the circuit requiring
all the blocks or from all the spares being previously used—
we have one other course of action: increasing the test group
size. When we increase the test group size, the percentage
of blocks being used as surrogates decreases thus freeing up
some blocks. The downside of increasing the test group size
is that we increase the rollback distance and consequently the
overall performance of the system.

IV. TEST GENERATION

As we have just mentioned, the length of a testing epoch
and therefore the rollback distance, is a function of the time
required to test and diagnose a PLA block. In this section
we will discuss a new method of generating test vectors.
By raising the granularity of defect diagnosis, we can better
suit the nanoPLA environment and generate a compact set of
test vectors that will significantly reduce the number of tests
vectors needed.

A. Targeted Defects

While PLAs may be subject to different types of faults such
as stuck-at faults and broken wires, we narrow our efforts to
detecting crosspoint faults. This follows from the assumption
that crosspoint defects are the only types of defects that will
appear during circuit operation. Broken nanowires, another
type of fault expected in nanoelectronics, are caused by defects
in the manufacturing process and should not occur during the
operational lifetime of the circuit unless it undergoes physical
stress. The other major class of faults, stuck-at faults, can be
modelled as crosspoint faults.

Crosspoint faults are classified according to their location
and nature, giving rise to the following four types of faults:

G A missing crosspoint connection in the AND plane.

Presents itself as an erroneous 1 output on some
inputs (i.e. fault signature of 0 — 1).

S An extra crosspoint connection in the AND plane.
Fault signature of 1 — 0.

A An extra crosspoint connection in the OR plane.
Fault signature of 0 — 1.

D A missing crosspoint connection in the OR plane.

Fault signature of 1 — 0.

B. Granularity of Diagnosis

As we have mentioned, in the high-defect world of nano-
electronics diagnosis is a key element in allowing us to
leverage the reconfigurability of our devices. When doing
diagnosis we have an option as to the level of granularity at
which we locate defects. At the lowest level of granularity, we
identify specific crosspoints in our PLA which are defective.
With information about a specific crosspoint that is faulty, we
have the option of replacing either the row or column that
the crosspoint is on. This is the approach taken in [23]. In a
PLA with size (n,p, m) we have on the order of (n+m)*p
crosspoints to differentiate between. At the next level, we
can identify a specific row or column that contains a fault
but not necessarily which crosspoint is defective. In the same
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Fig. 2. Two faults: A G fault on the B input and a S fault on the D input.

(n,p,m) PLA, we have only n+ m + p rows and columns to
examine. At the highest level of granularity diagnosis becomes
unnecessary because the whole PLA block will be replaced
and no differentiation is needed.

At the heart of the choice between level of granularities is
the trade-off between hardware cost and speed of detection.
The lower levels of granularity sacrifice the latter for the for-
mer while the higher levels make the opposite trade-off. In the
traditional scenario of offline testing with CMOS technology it
makes sense to choose a lower level because hardware is not as
abundant and time is not of primary importance. In the case
of nanoelectronics and especially the case of online testing,
we need to reevaluate the level of granularity we choose. In
this new environment where hardware resources are cheap and
plentiful, the necessity of fine-grained fault resolution wanes.

When dealing with nanoPLAs, the trade-off favors diagnosis
at the row/column granularity. What is not so clear is how
to efficiently diagnose errors to this level of granularity. In
the following subsections we will discuss our method for
row/column diagnosis. With our method, we can approach the
theoretical lower bound on the number of test vectors needed.

C. Row-based Diagnostic Resolution

Let us first examine S faults. For example, consider the §
fault on the D input line in Figure 2 which changes the function
t0 fs—fautt = ABCD + BDE. In order to produce a test for
this fault, we would need to set the product line to 1 while all
other product lines are set to 0. Luckily, under the reasonable
assumption that product lines in the PLA are unique, setting all
inputs with connections to this product line to 1 while setting
all other inputs to 0 would satisty the requirements for our test.
Therefore, the test vector ABCD’E’ would test for this fault.
Upon further investigation, it is easy to see that this test vector
will also test for all S faults on that row. While this single test
vector could not distinguish exactly which crosspoint on the
row had the S fault, the repair strategy for all of them is the
same: replace the row they are in.

Given that there are p product lines in the PLA, then exactly
p test vectors will be needed to diagnose all the S faults.
Because D faults have the same fault behavior as S faults,
the same p test vectors for S faults will also test all D faults.
A faults will also be covered by these test vectors as an extra
connection in the OR plane will cause one of the outputs to go
from O to 1. Unfortunately, because G faults are essentially the
dual of S and D faults, the same test vectors will not yield tests
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Fig. 3. Incompatible compaction of G faults on B input.

for the duals at the same time. As we will see, the row-based
diagnostic approach will not be fruitful for G faults.

D. Column-based Diagnostic Resolution

For § faults, the fault syndrome is a 1 output going to a 0
(1 — 0). For G faults, the fault syndrome is the dual of the
S fault’s syndrome (i.e. 0 — 1). To examine the differences
between these two types of faults, Figure 2 also shows an
example of a G fault. The G fault will result in the function
fo—faur = AC + BDE. To sensitize this fault, we set the
inputs so that the normal output will be 0 while the faulty
output will be a 1. Setting B to 0 while A and C are 1, will
achieve this goal. Because B is set to 0, the other product term
(BDE) will be 0 in both the normal and faulty cases so D and
E are don’t cares for our test vector. The test vector for this
fault would therefore be 101XX. Using this reasoning, if we
wanted to test for a G fault at A in the first product term, we
could use either 0110X or 011X0 as our test vector.

Comparing the test vectors for these two faults, we see that
it is impossible to combine them into a single test vector
because of disagreements between the A and B inputs. We
can generalize this to say that any test vector will be best for
at most one G fault on any given product line. This eliminates
the possibility of doing row-based diagnostics on G faults.
Fortunately, a column-based approach will lend itself more
readily to G faults, as we shall see.

Let us consider Figure 2 once more, this time focusing on
a G fault at the intersection of the B input and the second
product line (not shown). To sensitize this fault, we would
again set B to be 0. This time, however, D and E must be set
to 1 while A and C are don’t cares. The resulting test vector
is therefore X0X11. In this case, we can combine this test
vector and the test vector for the other G fault on B (101XX)
to obtain a single test vector that tests for both faults: 10111.
As in the row-based approach with S faults, while we cannot
differentiate between the two G faults on the B input line,
replacing that column will help us avoid both faults.

Unfortunately, it is not always possible to test for all G
faults in a given column with a single test vector. Figure 3 is
an example where this is the case. The example in this figure
is similar to that in Figure 2 but with a new product line, ACD,
connected to the output. Our previous test vector (10111) for
the B input column will not work in this case because the
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Fig. 4. Comparison of two sources of diagnostic ambiguity.

ACD product term will be 1 on both normal and faulty outputs,
masking all G faults. In this case, there is no single test vector
that will test for all G faults on the B column. What we desire
is an algorithm for finding the minimum number of test vectors
required to cover all faults on a given column.

E. Column-based Vector Compaction Problem

Before devising an algorithm to generate column-based
tests, we must formally define the problem we hope to solve.
First, we will define several items:

1 The set of all inputs to the PLA.

J The set of PLA inputs with a value of 1.

q The input corresponding to the column we wish to
create a test for.

The set of all product terms that contain q.

The set of all product terms that do not contain q.
A set of product terms that contain q.

A set of sets of product terms that contain q.

~wn YO

As previously discussed, in order to test for a G fault we
must set all non-q inputs to 1 while ¢ must be 0. We must also
ensure that there is at least one literal set to 0 in all product
terms that do not include ¢ (i.e. P). Including more faults to
be tested in a single vector, we must set more of the inputs to
1. We can continue to add faults to the test vector until it no
longer holds that at least one of the literals in each p € P is
0. We may formally write these requirements as the following
constraints:

a¢J o
(Vpe P)(Jiel\J)(iep) (@)
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In order to gain complete fault coverage, each ¢ € C' must
be included in at least one .S. Full coverage of a column with
test vectors therefore involves choosing a set of S’s that each
satisfy the above constraints. We refer to this set as R. To
minimize the number of test vectors required for a column
test, we must minimize | R| subject to the following constraint:

(Vee C)(3S € R)(c€ S) 4)

This problem is a variant of the Hitting Set problem, a well-
known NP-complete problem [24], and is therefore a NP-hard
optimization problem. In order to solve this problem, we have
developed a heuristic algorithm, which we describe in the next
section.

F. Closest Term Algorithm

As we continue to add product terms to increase the number
of faults covered per test vector, we make it harder to satisfy
all the constraints of the problem. This follows from the fact
that each product vector that is added increases the number of
inputs that must be set to 1. In order to minimize the impact
of adding another test, we will try grouping together product
terms in C' that share the most literals (i.e. are the “closest” to
each other). For example, if we are creating a test for column
A and the product terms involving A are ABCD, ABDE, and
ABF, we will try to group together ABCD and ABDE since
they share 3 literals. If grouping ABCD and ABDE together
violates our constraints, then ABCD will be placed in its own
vector and we will move on to trying to group together ABDE
and ABF.

For a PLA of size (n,p, m) then our algorithm will run in
O(pn?) time. The runtime will be dominated by the time it
takes to check the constraint given in equation 2. If we defined
¢ = |C| then we will need to check p — ¢ product terms for
the aforementioned constraint for every element in C'. Since
each product term can have up to n literals, the time spent
for each column is O((p — ¢)cn). We expect ¢ to be small in
comparison with n and p so we can simplify this to O(pn).
Since we have n input lines to generate tests for, we have
O(pn?) overall runtime.

G. Diagnostic Ambiguities

While each test vector generated for S, D, and A faults
will always lead to the unambiguous resolution of a fault to
a specific row, ambiguities may be present when testing for
G faults. Ambiguities that arise while testing for these types
of faults may be inherent to the structure of the PLA or they
may be a result of the column-based test vector compaction.
Figure 4 illustrates the difference between the two sources of
ambiguity.

In Figure 4(a), we see an example of inherent ambiguity.
Here we have a simple PLA with two product terms: ABC and
BCD. A test for a G fault on the A term of the first product
line will require that A be set to O while B and C are set to
1. Because B and C are set to 1, in order to avoid masking

the fault we must set D to 0. This will give us a test vector
of 0110. Following similar reasoning, if we wish to test for a
G fault at the D on BCD, our test vector will also be 0110.
Unfortunately there is no way to differentiate between these
two faults so both the A and D lines would need to be replaced
if an error was detected on this test vector. Luckily, we will
only see this type of ambiguity in a very specific case. If we
have two product terms, each involving z literals, that have
exactly x — 1 literals in common, then there will be ambiguity
in the two columns corresponding to the non-shared literals.

Figure 4(b) shows an example of ambiguity that results from
test vector compaction. In order to test all G faults on the A
column, we would need to use the test vector 01110. However,
we notice that this test vector also detects a G fault on the E
term of the BCDE product term. If we were to test for each
fault on column A separately using the test vectors 01100 and
00110, then we could eliminate this ambiguity. We are thus
offered a trade-off between the speed of testing and the level
of ambiguity. The choice between these two trade-offs will be
influenced by the MTTF and the number of spare columns
available per PLA block.

H. Multiple Faults

Until this point, we have focused the discussion of our test
generation algorithm on the single fault case. Although we
expect the single defect case to be the typical case, it is still
possible that multiple devices within a PLA will die in between
tests of that block. Fortunately, our set of test vectors will cover
multiple faults also. We will now describe why.

We can think of a multiple defect case as being a combina-
tion of single defects. For the multiple defect to go undetected,
it would have to be masked in all the vectors that would have
uncovered the single defects. We can easily show that this is
not possible. First, consider G faults. A G fault will cause the
output to go from a 0 to a 1. For another fault to mask this,
it would have to inhibit the product term that the G fault is
on from going to 1. An S fault would not produce this effect
since it can only cause a product term to go from a 1 to a 0
when its input line is a 1, which it can never be for the test
vector for the G fault. Another G fault could also not produce
this masking since it has the wrong fault signature. A D fault
could cause this effect but because a D fault is tested with a
row-based test vector, it will be uncovered with another test
vector and both faults will be fixed when the row they are in
is replaced. Using similar reasoning, we can show that any
other combination of faults will be detected by our scheme.

V. EXPERIMENTAL RESULTS

Our proposal for checkpoint-based fault-tolerance was eval-
uated in two parts. First, we evaluated the effectiveness of
our test generation scheme for a range of PLA sizes. We then
tested the checkpointing method for several benchmark circuits
with a varying fault rate. In the following subsections we will
further describe the setup of these tests as well as provide the
results of our tests.
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name avg (n,p,m) | max (n,p,m) | max vectors
alu4 (13,83,2) (18,97,3) 324
apex2 (23,18,3) (25,83,10) 282
apex4 9,71,2) (9,80,1) 355
bigkey (20,88,4) (22,100,6) 375
des (22,38,7) (23,100,5) 266
diffeq (23,51,6) (25,100,4) 555
dsip (24,51,4) (25,68,4) 204
elliptic (22,35,8) (25,100,6) 402
ex1010 (11,81,1) (12,95,1) 467
ex5p (7,25,9) (8,34,10) 116
frisc (23,42,6) (25,100,2) 462
misex3 (24,83,2) (15,99,3) 320
pdc (16,91,3) (19,100,2) 331
s38417 (19,30,8) (19,50,9) 220
$38584 (22,31,10) (28,96,10) 265
seq (20,21,5) (20,90,5) 244
spla (13,69,8) (6,98,6) 325
tseng (23,50,8) (25,98.4) 457
TABLE 1

CIRCUIT MAPPING RESULTS

A. Test Generation

To evaluate the effectiveness of our test generation, we
selected 18 of the largest benchmark circuits from the MCNC
suite. For each of these benchmarks, we used the PLAmap
utility [25] to map them into an array of PLA blocks. Using
the PLAmap utility, we were able to specify the maximum
dimensions of each PLA block. While the logic mapped into
the PLA blocks will not exceed the maximum dimensions,
it is possible that it will not use all the available lines.
For the benchmarks, we tried to map the circuits into PLAs
of dimension (n,p,m) = (25,100,10). These dimensions were
chosen as a trade-off between the number of PLA blocks
needed for mapping and the running time of PLAmap. Larger
dimensions are also desirable because they allow the micro-
to-nanoscale interface to provide higher device density.

Table I gives the maximum as well as the average di-
mensions of the mapped PLA blocks. The chart in Figure 5
compares the average number of test vectors needed for each
of the benchmarks we evaluated to the theoretical minimum
of our algorithm. The minimum which we can hope to achieve
is n + p, where n is the number of input lines and p is the
number of product lines. Here, we based the minimum on the
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Fig. 6. Progress ratio for varying fault frequency. Group size = 6.

average size of PLAs from Table I. From this figure we can
see that our algorithm normally comes within a constant factor
of 2 or 3 of the theoretical minimum, giving us O(n+p). We
can further compare this to previous PLA diagnosis algorithms
which require O((n + m)p).

B. Checkpointing Evaluation

To test the effectiveness of our checkpointing algorithm,
we again used the largest circuits from MCNC and mapped
them into PLAs of dimension (25,100,10). We use a custom-
built PLA simulator to test the circuits over any number of
cycles. Our custom simulator allows us to randomly inject an
arbitrary number of faults into any of the PLA blocks with
any frequency.

To test the ability of our proposed solution to handle
frequent faults, we simulated each of the benchmark circuits
for increasing fault frequencies. To measure the amount of
useful work done we define a quantity called the progress ratio
to be the total actual number of cycles completed divided by
the total number of cycles required to complete those cycles.
For example, if we ran our simulator for 100 cycles but a
rollback occurred from 75 to 50 then 125 total cycles would
be required and the progress ratio would be % = 0.8. The
lower this ratio, the more time is spent redoing the same work
because of faults.

Figure 6 gives the progress ratios that result from varying
fault frequency with 6 block test groups. Here we can see that
the progress ratio quickly increases to 0.85 when the fault
period is 10,000 cycles. For our simulation, we set the epoch
length to be the time for the max number of tests (given in
Table I), which averaged out to 331 cycles per epoch across all
circuits. Because our rollback distance is 4 epochs, the average
rollback time is 331 * 4 = 1324 cycles. We could therefore
expect 0.87 efficiency when the period is 10,000 cycles which
is close to the 0.85 progress ratio from our results. If we had
chosen a crosspoint granularity test method, the epoch size
would have been approximately 3500 cycles. Using our test
generation algorithm, we are therefore able to withstand a fault
frequency that is 10X higher than previously possible.
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One of the parameters that we have control over for our
proposed scheme is the number of test blocks per test group.
Larger test groups help to amortize the required overhead for
surrogate blocks but it also leads to longer rollback times.
Figure 7 plots the progress ratio of each of the circuits for
varying test group sizes when the fault frequency is 1 per
10,000 cycles. As we expected, increasing block sizes leads
to a linear decrease in the progress ratio. At this high fault rate,
for every test block added to a group we increase the progress
ratio by roughly 0.03. Regardless of the fault frequency, we
can see that decreasing group size can improve our progress
rate.

VI. CONCLUSION

In this paper we have presented a checkpointing scheme
designed to tolerate device death in a nanoPLA. By dividing
the PLA blocks into test groups we were able to effectively
share testing resources among multiple blocks and thus de-
crease the amount of hardware overhead needed. Depending
on the prevailing MTTF, we are able to vary the number of test
blocks per group and therefore dynamically alter the overhead
to suit the fault rate.

We also developed a new test generation method that is
based on test vector compaction among rows and columns.
This row/column based compaction allows for diagnosis at the
row/column level rather than at the crosspoint level. This level
of granularity better suits the nanoelectronic environment,
leveraging extra resources and reconfigurability in order to
reduce test time. As a result, our new test generation algorithm
reduced the number of test vectors from O((n + m) * p) to
O(n+p), allowing for a 10X higher defect rate to be tolerated
by our checkpointing scheme for PLAs of size (25,100,10).
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