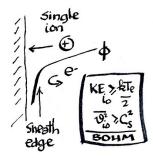

First laser-induced fluorescence measurements of argon and xenon ion velocities near the sheath boundary in 3 ion species plasmas

Greg Severn

69th Gaseous Electronics Conference, GEC 2016 Ruhr-Universität Bochum, Germany 11 October 2016

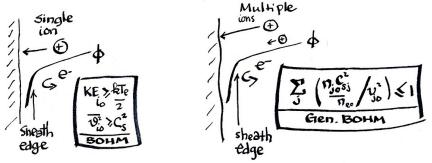
This talk is about Bohm's Criterion, and validating experiments in multiple ion species plasma, performed for the first time

Thanks to UW-USD-Iowa collaborators and DOE-NSF Partnership for Basic Plasma Physics

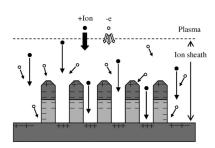


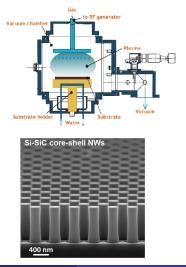
Team Sheath UW-USD-Iowa

- Noah's recent doctoral student, staff scientist: Dr. Chi-Shung Yip top left,
- latest students at USD, Tim Welsh ('14), Chris Yip ('14), Quinn Pratt ('17)
- Scott Baalrud (U. Of Iowa) 2015 NSF Career Award winner



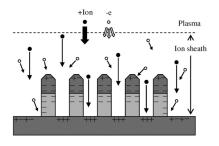
Bohm's criterion (c. 1949): ions break sound barrier so quasi-neutrality can break down to form a sheath at the plasma boundary

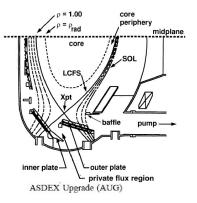

Bohm's criterion (c. 1949): ions break sound barrier so quasi-neutrality can break down to form a sheath at the plasma boundary



first results, Sheridan, Goree, & Goeckner, verified $v_{io} > C_s$ in the sheath. Phys. Fluids B 4 (1992) 1663; GBc: K.-U. Riemann, IEEE Trans. Plasma Sci. 23, 709 (1995).

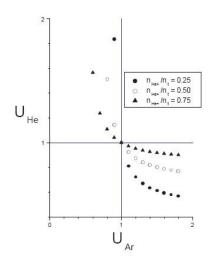
So what-Who cares-Big deal???


Practical Answers: if you could patent 'the sheath', you'd make a lot of money in VLISI-ULSI, and it's important in divertor plasma physics



So what-Who cares-Big deal???

Practical Answers: if you could patent 'the sheath', you'd make a lot of money in VLISI-ULSI, and it's important in divertor plasma physics

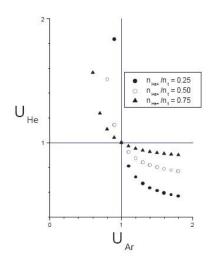

2012 Plasma Roadmap, Samukowa et al., J. Phys. D: Appl. Phys. 45 (2012) 253001 *all such plasma systems are multiple ion species plasmas*

USD ϕ -zics

GEC16Bochum

5 / 18

HOW DOES BOHM WORK for 2, 3, n ion species? Validation experiments are still new!


Multiple-species Bohm Criterion (GBC) has a continuum of solutions

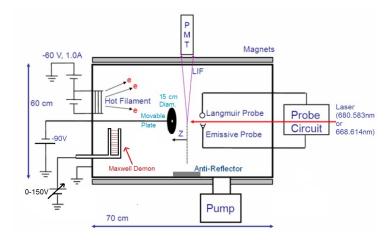
•
$$U_i \equiv v_{io}/C_i, GBC \Rightarrow \sum_i \frac{n_{io}/n_{eo}}{U_i^2} \le 1,$$

• simple solution
$$\#1, \; U_i=1$$

• simple solution #2,
$$U_i = U_j \sqrt{rac{M_i}{M_j}}$$

HOW DOES BOHM WORK for 2, 3, n ion species? Validation experiments are still new!

Multiple-species Bohm Criterion (GBC) has a continuum of solutions

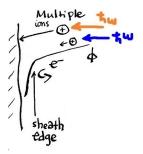

•
$$U_i \equiv v_{io}/C_i, GBC \Rightarrow \sum_i \frac{n_{io}/n_{eo}}{U_i^2} \le 1,$$

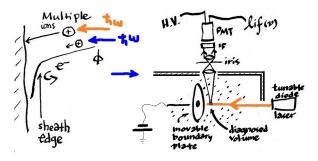
• simple solution
$$\#1$$
, $U_i=1$

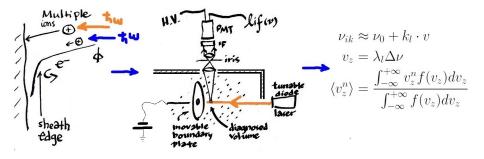
• simple solution #2,
$$U_i = U_j \sqrt{rac{M_i}{M_j}}$$

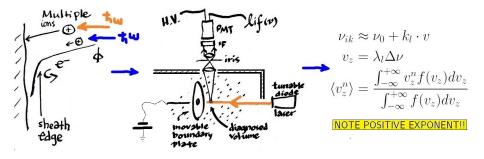
• IF
$$n = 3$$
, U_i is Typically Neither!

experimental details-2nd part

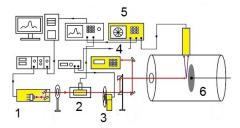

wont treat emissive probe measurements that locate the sheath edge, will treat Laser-induced fluorescence (LIF)

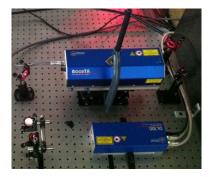

measurements


USD ϕ -zics


7 / 18

- ∢ ∃ →





Typical setup now involves a MOPA laser system: a 'seed' laser optically amplified

1-Diode Laser, 2-Iodine Cell, 3-Chopper, 4-Wavemeter, 5-Lock-in, 6-Boundary plate

Bohm Criterion is validated in Xell as with ArII, positive moments!

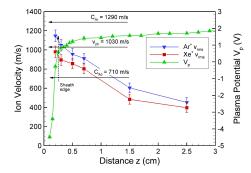
(a) 2.5 cm 125000 - 6p⁴D°_{5/2} (³P₁)6p[2]⁰ 0.5 cm 0.2 cm 120000 IVDFS 30 Distance 1.5 Comp. C. 115000 energy level (cm^{.1}) $5d^4F_{_{7/2}}$ 110000 0.0 -500 1000 Xe⁺ Velocity (m/s) (³P₄)5d[3]_{7/2} 105000 6s⁴P_{3/2} 900 (b) 3 800 (³P₁)6s[1]_{3/2} 100000 700 C. = 675 m/s Ke* Velocity (m/s) 600 = 680.6 nm (air) λ12 500 95000 λ₂₃ = 492.1 nm 400 300 Spatial 90000 200 Profiles 5/2 7/2 3/2 100 J 0 2.5 1.5 Distance z (cm)

G.D. Severn, et al., Rev. Sci. Instrum. 69 10 (1998), Severn et al., Phys. Rev. Lett. 90 1450001 (2003), G. Severn,

et al., Rev. Sci. Instrum., 78 116105 (2007), D. Lee, et al., Appl. Phys. Lett. 91, 041505 (2007)

USD ϕ -zics

GEC16Bochum

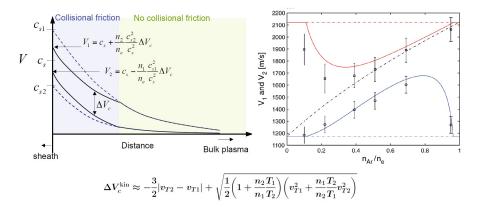

vdf, f(v_z, z) (a.u.)

Plasma Potential V_p (V


-4

1500

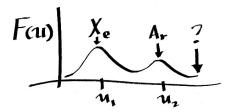
The first validation experiment of the generalized Bohm Criterion (gBC) was successful



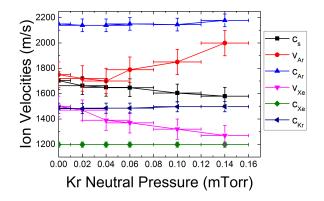
The first validation experiment of the generalized Bohm Criterion (gBC) was successful

Measurements of Ar+ and Xe+ velocities near the sheath boundary of Ar+Xe plasma using two diode lasers, D. Lee, N. Hershkowitz, and G. Severn, Appl. Phys. Lett. **91**, 041505 (2007)

Baalrud et al. predict the IEF, turns on for thermal ions $\Delta V \ge V_{crit}, \rightarrow$, kinetic Bohm Criterion depends on ion flow


S. D. Baalrud and C. C. Hegna, Physics of Plasmas 18, 023505 2011, Hershkowitz, et al. Physics of Plasmas 18 0000000 2011

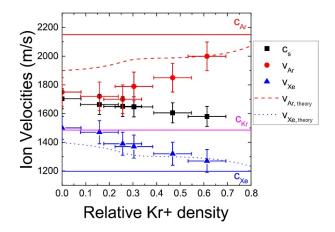
USD ϕ -zics


GEC16Bochum

12 / 18

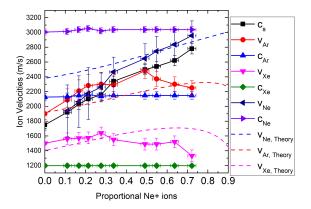
New results with 3 ion species plasma-last part

Now adding a third ion species, intermediate mass (Ar, Kr, Xe): does IEF bring ions to a common speed at the sheath edge? NO!!??

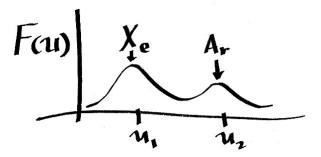


 $P_{Xe} = 0.04m$ Torr, $P_{Ar} = 0.1m$ Torr, fixed, P_{Kr} was varied, with $I_d = 2A$, and kT_e 2eV.

USD ϕ -zics

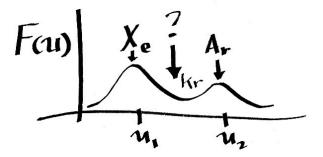

14 / 18

Varying Kr+ density, we find that $C_s < \langle V_o \rangle_{Ar} < C_{Ar}$, as if adding Kr^+ gradually turns off IEF


 $T_e = 1.95 \pm 0.08eV$, and argon and xenon neutral pressures are fixed at 0.1mTorr and 0.04mTorr respectively–Yip et al., Phys. Plasma 23 050703 (2016); G-H Kim, et al., J. Phys. D: Appl. Phys. 48 (2015) 225201

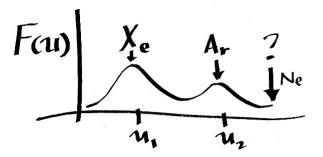
We tried a less massive 3rd ion (Ne) to see if the IEF would always remain active, which it does, but then ultimately shuts off gradually too

 T_{e} = 1.95 \pm .08eV, argon and xenon neutral pressures are fixed at 0.1 mTorr and 0.04 mTorr, respectively


Heuristically, Penrose criterion \Rightarrow if F(u) has one maxima there are no growing modes, but if there are minima we can get exponentially growing modes

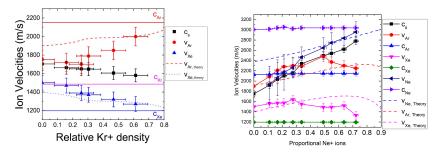
$$F(u) = \sum_{j} \frac{\Omega_{pj}^2}{\omega_{pe}^2} f_j(u)$$

USD ϕ -zics

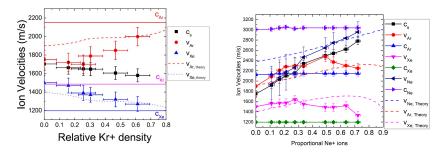

Heuristically, Penrose criterion \Rightarrow if F(u) has one maxima there are no growing modes, but if there are minima we can get exponentially growing modes

$$F(u) = \sum_{j} \frac{\Omega_{pj}^2}{\omega_{pe}^2} f_j(u)$$

USD ϕ -zics


Heuristically, Penrose criterion \Rightarrow if F(u) has one maxima there are no growing modes, but if there are minima we can get exponentially growing modes

$$F(u) = \sum_{j} \frac{\Omega_{pj}^2}{\omega_{pe}^2} f_j(u)$$


USD ϕ -zics

3 ion species problem: under most circumstances the ions neither fall out of the plasma at the system sound speed, nor their Bohm speeds-central point of talk

THESE RESULTS ARE NOT SIMPLE

3 ion species problem: under most circumstances the ions neither fall out of the plasma at the system sound speed, nor their Bohm speeds-central point of talk

THESE RESULTS ARE NOT SIMPLE....but thanks for your attention anyway!:)