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In order to engineer an open quantum system and its evolution, it is essential to identify and control the
memory effects. These are formally attributed to the non-Markovianity of dynamics that manifests itself by
the evolution being indivisible in time, a property which can be witnessed by a nonmonotonic behavior of
contractive functions or correlation measures. We show that by monitoring directly the entanglement behavior
of a system in a tripartite setting it is possible to witness all invertible non-Markovian dynamics, as well
as all (also noninvertible) qubit evolutions. This is achieved by using negativity, a computable measure of
entanglement, which in the usual bipartite setting is not a universal non-Markovianity witness. We emphasize
further the importance of multipartite states by showing that non-Markovianity cannot be faithfully witnessed
by any contractive function of single qubits. We support our statements by an explicit example of eternally
non-Markovian qubit dynamics, for which negativity can witness non-Markovianity at arbitrary timescales.
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Introduction. Describing effective dynamics of any real-
istic quantum system that interacts with its environment in-
evitably requires the theory of open quantum systems [1,2]. In
recent years, a growing interest has been devoted to the deter-
mination of dynamical properties that can be pinpointed when
studying solely the system evolution; in particular, distin-
guishing memoryless—Markovian—dynamics from ones that
exhibit memory effects. Various ways have been proposed on
how to define the concept of memory or, more precisely, non-
Markovianity at the level of quantum evolutions (see [3–6] for
detailed reviews on the topic). Although recently questioned
[7,8], the most commonly adopted definition [9–11] is the
natural generalization of the Chapman-Kolgomorov equation,
which assures the time divisibility of stochastic maps in the
case of classical Markovian processes [12]. In particular,
focusing on the family of quantum operations, i.e., completely
positive (CP) trace-preserving (TP) maps �t that represent the
system evolution from the initial time t = 0 to each t > 0, one
may verify their CP divisibility [13] by inspecting whether
at any intermediate time 0 � s � t each of them could be
decomposed (concatenated) as

�t = Vt,s ◦ �s (1)

with a valid dynamical (CPTP) map Vt,s.
Nevertheless, the above criterion is often weakened in

order to construct witnesses of non-Markovianity that despite
not always being able to certify the non-CP character of
Vt,s can have an operational motivation. The most commonly
used notion is the temporal behavior of distinguishability, as
measured by the trace distance ||ρ − σ ||1/2 with the trace
norm ||M||1 = Tr

√
M†M, between a pair of evolving quantum

states ρ and σ [14]. As the trace distance is nonincreasing
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for a larger class of P-divisible evolutions [3], i.e., ones
decomposable as in Eq. (1) but with Vt,s guaranteed to only
be positive (P), it monotonically decreases for some dynamics
that according to the criterion (1) are non-Markovian [10].
Still, its increase at a given time instance is interpreted as a
manifestation of information backflow from the environment
to the system [15,16].

However, when dealing with invertible [17] or image non-
increasing [18] dynamical maps �t , which describe almost
all quantum evolutions, the CP-divisibility criterion can be
restated in terms of the information backflow. By allowing for
an ancilla of system dimension d , the condition (1) becomes
equivalent to the statement [15]

d

dt
‖�t ⊗ 1d [p1 ρ1 − p2 ρ2]‖1 � 0, (2)

which must now be valid for all t � 0, all bipartite system-
ancilla initial states ρ1, ρ2, and all probabilities p1 + p2 = 1
[19]. In this Rapid Communication, we will consider evolu-
tions for which this equivalence holds, which in fact includes
also all qubit dynamics [20]. That is why, from now on we
will refer to non-Markovianity as defined by the violation of
CP divisibility.

Still, it has remained unknown whether such notion of non-
Markovianity can be faithfully verified by considering solely
the evolution of correlations; in particular, dynamics of the
entanglement between the system and some ancillae [9]. This
would allow one to certify non-Markovianity by preparing the
system and ancillae in an initial correlated state, in order to
observe an increase of some entanglement measure [21,22] at
a later time t∗ > 0, without the need to consider ensembles
of initial states and distinguishability tasks [16]. Previous
results suggest that traditional correlation quantifiers, such as
entanglement measures [23,24] and mutual information [25]
fail to witness all non-Markovian evolutions, while a recently
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proposed correlation measure [23] can witness “almost all” of
them.

In this work, we show that negativity, a well-known com-
putable quantifier of bipartite entanglement [26,27], can wit-
ness all non-Markovian qubit dynamics �t and all invert-
ible evolutions of arbitrary dimension. After discussing the
limitations in witnessing non-Markovianity in single-qubit
systems, we present the general construction for negativity as
a universal non-Markovianity witness. We provide an explicit
example, witnessing violations of CP divisibility for eternally
non-Markovian qubit evolutions [28] at arbitrary timescales.

Witnessing non-Markovianity with contractive functions. A
general witness of non-Markovianity can be built from any
contractive function f (ρ, σ ) of two quantum states ρ and σ ,
where contractivity means that

f (�[ρ],�[σ ]) � f (ρ, σ ) (3)

for any quantum operation �. Important examples for
contractive functions are the trace distance ||ρ − σ ||1/2,
infidelity 1 − F (ρ, σ ) with fidelity F (ρ, σ ) = ||√ρ

√
σ ||1,

and the quantum relative entropy S(ρ||σ ) = Tr[ρ log2 ρ] −
Tr[ρ log2 σ ]. Recently, a family of contractive functions,
named quantum relative Rényi entropy, has been introduced
as [29,30]

Dq
α (ρ||σ ) = 1

α − 1
log2 Tr[(σ (1−α)/2αρσ (1−α)/2α )α], (4)

with α � 1/2. In the limit α → 1 the function Dq
α (ρ||σ )

coincides with the relative entropy S(ρ||σ ), and for α = 1/2
we obtain Dq

1/2(ρ||σ ) = −2 log2 F (ρ, σ ).
Noting that any contractive function is monotonically de-

creasing with t for any Markovian evolution, an increase of
f for some t > 0 serves as a witness of non-Markovianity.
It is now reasonable to ask whether any non-Markovian evo-
lution can be witnessed by some suitably chosen contractive
function. As we show in Theorem 1 below, the answer to this
question is negative for single-qubit systems. An important
type of evolution in this context is given by Eq. (1), where Vt,s

admits the decomposition

Vt,s[ρ] = pE1[ρ] + (1 − p)E2[ρT ] (5)

with probabilities p and CPTP maps E1 and E2 which can
further depend on t and s with s � t . As maps Vt,s that
admit Eq. (5) are guaranteed to be P but not necessarily CP
(see also the Supplemental Material [31]), they must lead
to P-divisible evolutions. These, however, may still be non-
Markovian according to the CP-divisibility criterion (1). An
example of dynamics that is not CP divisible but admits the
form (5) is presented below in Eq. (22). We are now ready to
present the first main result of this work.

Theorem 1. For any non-Markovian evolution �t = Vt,s ◦
�s with Vt,s fulfilling Eq. (5) it holds that

d

dt
f (�t [ρ],�t [σ ]) � 0 (6)

for any contractive function f (ρ, σ ) and any single-qubit
states ρ and σ .

Proof. First, we will show that for any two single-qubit
states ρ and σ there exists a CPTP map �t,s (that may in

general depend on both ρ and σ ) such that

Vt,s[ρ] = �t,s[ρ], Vt,s[σ ] = �t,s[σ ]. (7)

This statement can be proven by considering the Bloch vectors
r and s of the states ρ and σ . The Bloch vector r̃ of the
transposed state ρT is related to r = (rx, ry, rz ) via a reflection
on the x-z plane, i.e., r̃ = (rx,−ry, rz ), and similar for σ . In
particular, this means that transposition preserves the lengths
of the two Bloch vectors and the angle between them. This
implies that for any two states ρ and σ there exists a unitary
rotation U such that

ρT = UρU †, σ T = UσU †. (8)

The CPTP map �t,s fulfilling Eqs. (7) is thus given as

�t,s[ρ] = pE1[ρ] + (1 − p)E2[UρU †], (9)

where the unitary U is chosen such that Eqs. (8) hold. Note
that, in general, the unitary U depends on the two states ρ and
σ .

Combining the above arguments, we obtain the following
for any contractive function f and any two single-qubit states
ρ and σ :

f (�t [ρ],�t [σ ]) = f (Vt,s ◦ �s[ρ],Vt,s ◦ �s[σ ])

= f (�t,s ◦ �s[ρ],�t,s ◦ �s[σ ])

� f (�s[ρ],�s[σ ]), (10)

which proves that any contractive function is monotonically
decreasing with t . �

While Theorem 1 applies only to single-qubit systems,
this constraint can be lifted if one considers only specific
functions, namely, the trace distance, the relative entropy,
and the quantum relative Rényi entropy Dq

α (ρ||σ ) for α > 1.
Noting that these functions are contractive under positive
trace-preserving maps [32], it follows that they are monotonic
under non-Markovian evolutions which are P divisible. We
refer to the Supplemental Material for more details.

A question which is left open in Theorem 1 is whether it is
still possible to detect non-Markovianity via the behavior of a
contractive function f . Even if f is monotonically decreasing
with t , its overall behavior might depend on whether the
evolution is Markovian or not. We answer this question in the
Supplemental Material, showing that the monotonic behavior
of any contractive function can be reproduced by Markovian
dynamics.

Witnessing non-Markovianity with entanglement. The
results of the previous section tell us that to witness all
non-Markovian evolutions, our input state must be of higher
dimension, possibly a compound state of the system extended
by ancillae, i.e., we need to consider the evolution �A

t ⊗ 1B

acting on a bipartite state ρ = ρAB. The behavior of any
entanglement measure EA|B of the final state

σt = �A
t ⊗ 1B[ρ] (11)

then serves as a witness of non-Markovianity, as for any
Markovian evolution the entanglement must monotonically
decrease [9]. However, this approach is not suitable to create
a universal witness of non-Markovianity, as for any evolution
�t which consists of an entanglement breaking map at some
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finite time t ′ followed by an arbitrary non-Markovian evolu-
tion, the state σt will have zero entanglement for all t � t ′
[23].

Even if the evolution is not entanglement breaking, we
can show that certain entanglement quantifiers fail to detect
non-Markovianity. In the following, we quantify the amount
of entanglement via negativity [26,27]

EA|B(ρ) = ||ρTB ||1 − 1

2
, (12)

where TB denotes the partial transpose with respect to the
subsystem B. As is shown in the Supplemental Material,
negativity is monotonic under local positive maps of the form
(5), i.e.,

PA ⊗ 1B[ρ] = pEA
1 ⊗ 1B[ρ] + (1 − p)EA

2 ⊗ 1B[ρTA ], (13)

for any bipartite state ρ = ρAB and probability p [33]. This
implies that negativity is monotonically decreasing for any
local evolution �A

t = V A
t,s ◦ �A

s with Vt,s being of the form
(5). An example for a non-Markovian evolution admitting
this form will be given in Eq. (22). As we further show in
the Supplemental Material, negativity cannot be used to wit-
ness non-Markovianity if EA|B(�A

t ⊗ 1B[ρ]) is monotonically
decreasing with t , as a decreasing behavior can always be
reproduced by Markovian dynamics. From this, we conclude
that negativity EA|B fails to witness some non-Markovian
evolutions on subsystem A even if they are not entanglement
breaking [34].

In light of these results, it is tempting to conclude that
negativity is not suitable for construction of a universal
non-Markovianity witness. Quite surprisingly, the situation
changes completely by adding an extra particle C, and con-
sidering the negativity EAB|C of the state

τABC
t = �A

t ⊗ 1BC[ρABC], (14)

where ρABC is a suitably chosen initial state. In fact, taking
additional ancilla systems into account has proven to be
useful for relating different notions of non-Markovianity [see
Eq. (2)]. The following theorem shows that in a tripartite
setting negativity is a universal non-Markovianity witness for
all invertible evolutions and for all dynamics of a single qubit.

Theorem 2. For any invertible non-Markovian evolution
�t there exists a quantum state ρABC such that

d

dt
EAB|C(

�A
t ⊗ 1BC[ρABC]

)
> 0 (15)

for some t > 0. For single-qubit evolutions �t the statement
also holds for non-invertible dynamics.

Proof. We introduce the following state:

ρABC = p1ρ
AB1
1 ⊗ |�+〉〈�+|B2C + p2ρ

AB1
2 ⊗ |�−〉〈�−|B2C

,

(16)
where B1 and B2 are subsystems of B = B1B2, |�±〉 =
(|01〉 ± |10〉)/

√
2 are maximally entangled states, and the

states ρi and probabilities pi will be specified in more detail
below. If now an evolution �A

t acts on the state ρABC , the
time-evolved state takes the form

τABC
t = p1�

A
t

[
ρ

AB1
1

] ⊗ |�+〉〈�+|B2C

+ p2�
A
t

[
ρ

AB1
2

] ⊗ |�−〉〈�−|B2C
. (17)

To evaluate the negativity in the AB|C cut we notice that the
partial transposition with respect to C is given by

τ TC
t = 1

2�A
t

[
p1ρ

AB1
1 + p2ρ

AB1
2

] ⊗ (|01〉〈01|B2C + |10〉〈10|B2C )

+ 1
2�A

t

[
p1ρ

AB1
1 − p2ρ

AB1
2

]

⊗(|�+〉〈�+|B2C − |�−〉〈�−|B2C ) (18)

with |�±〉 = (|00〉 ± |11〉)/
√

2. Since the states |�±〉 are
orthogonal to |01〉 and |10〉, the trace norm of τ

TC
t can be

evaluated as∥∥τ TC
t

∥∥
1 = 1 + ∥∥�A

t

[
p1ρ

AB1
1 − p2ρ

AB1
2

]∥∥
1, (19)

where we used the fact that μ := p1�
A
t [ρAB1

1 ] + p2�
A
t [ρAB1

2 ]
is a valid quantum state, and thus ||μ||1 = 1. The negativity
of τABC

t is thus given as

EAB|C(
τABC

t

) = 1

2

∥∥�A
t

[
p1ρ

AB1
1 − p2ρ

AB1
2

]∥∥
1. (20)

To complete the proof of the theorem, recall that for any
invertible evolution there exist states ρ

AB1
i and probabilities pi

such that Eq. (2) is violated if the evolution is non-Markovian
[15,17]. The same is true for all (also noninvertible) single-
qubit dynamics [20]. �

Few remarks regarding Theorem 2 are in place. First, we
note that invertible dynamics constitute the generic case of
quantum evolutions, as noninvertible evolutions have zero
measure in the space of all quantum evolutions [23,35].
Moreover, the statement of Theorem 2 can be lifted to include
also dynamics which are image nonincreasing, by applying
the same arguments [18]. We further notice that negativity
is a faithful entanglement quantifier in the setting considered
here, and the states in Eq. (16) are never bound entangled (see
Supplemental Material for more details).

Applications. We apply the results presented above to qubit
eternally non-Markovian (ENM) dynamics [28], an evolution
exhibiting non-Markovianity at any t > 0, even at arbitrarily
small and large timescales. Such a model falls into well-
studied categories of random-unitary [36] and phase-covariant
[37] qubit commutative evolutions. Yet, it constitutes an im-
portant example with its non-Markovian features being hard to
witness [38,39]. In general, a random-unitary qubit dynamics
is described by a time-dependent master equation:

dρ(t )

dt
=

3∑
i=1

γi(t ){σiρ(t )σi − ρ(t )}, (21)

which upon integration yields a dynamical map corresponding
to a qubit Pauli channel, i.e.,

�t [ρ] =
3∑

μ=0

pμ(t )σμρσμ, (22)

where the mixing probabilities pμ(t ), and their time depen-
dence, can be explicitly expressed as a function of γi(t ) [36].
For any such evolution the CP-divisibility condition (1) is
equivalent to the statement that for all t > 0 all the decay rates
are non-negative, γi(t ) � 0, while the P-divisibility criterion
corresponds to a weaker requirement that at all times t > 0
each pair (i �= j) of decay parameters satisfies γi(t ) + γ j (t ) �
0 [36].
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The ENM model introduced in Ref. [28] corresponds then
to the choice

γ1 = γ2 = α
c

2
, γ3(t ) = −α

c

2
tanh(ct ) (23)

with α � 1 and c > 0. Crucially, ENM dynamics exhibits
non-Markovianity at all times, as γ3(t ) < 0 for all t > 0.
In contrast, it is always P divisible due to γ
 + γ3(t ) =
α c

2 [1 − tanh(ct )] � 0 for 
 ∈ {1, 2} and any t � 0 [40,41].
Still, the resulting CP map (22) is invertible, i.e., for every
t � 0 one can find a linear map �−1

t such that �−1
t ◦ �t = 1.

As a result, one can unambiguously define Vt,s = �t ◦ �−1
s in

(1) and explicitly compute its Choi-Jamiołkowski (CJ) matrix,
�Vt,s := 2Vt,s ⊗ 1[|�+〉〈�+|], associated with it:

�Vt,s = 1

2

⎛
⎜⎜⎜⎝

1 + λ2α
t−s 0 0 2α

t,s

0 1 − λ2α
t−s 0 0

0 0 1 − λ2α
t−s 0

2α
t,s 0 0 1 + λ2α

t−s

⎞
⎟⎟⎟⎠,

(24)
where λτ = e−cτ and t,s = λt−s cosh(ct )sech(cs). It may be
explicitly verified that �Vt,s is nonpositive for any 0 < s < t ,
confirming the “eternal non-Markovianity” of dynamics, un-
less s = 0 for which �Vt,0 = ��t � 0 assures the physicality
of the overall evolution.

In the Supplemental Material, we explicitly show that the
CJ matrix (24) admits a convex decomposition:

�Vt,s = p1P�+ + p2P�− + (1 − p1 − p2)PTB
�+ (25)

with probabilities p1 = 1
2 (λ2α

t−s + α
t,s) and p2 = 1

2 (1 − α
t,s),

and Pψ = 2 |ψ〉〈ψ |. Hence, it follows (see Supplemental Ma-
terial for a general discussion) that the decomposition (25)
of the CJ matrix assures the map Vt,s for the ENM dynam-
ics to admit a decomposition (5). As a direct consequence,
Theorem 1 applies to the ENM dynamics, implying that no
contractive function f (ρ, σ ) evaluated on single-qubit states
ρ and σ will be able to witness non-Markovianity of the
ENM model. Moreover, as Eq. (5) naturally generalizes to
Eq. (13), it becomes evident that negativity cannot be used
in the usual bipartite setting EA|B(�A

t ⊗ 1B[ρ]) to witness the
non-Markovianity of the ENM evolution.

However, we explicitly demonstrate that, in accordance
with the Theorem 2, negativity in the tripartite setting, EAB|C ,
can be used to faithfully witness the non-Markovianity of the
ENM evolution for any t∗ > 0. In order to choose the initial
state ρABC in Eq. (16)—in particular, its constituents p
ρ

AB1



(
 = 1, 2) such that EAB|C increases at a given t∗ > 0—we
follow the constructive method of Bylicka et al. [17]. We
choose ρ

AB1

 ∈ B(C2 ⊗ C3) and mixing probabilities p
 such

that the trace norm in Eq. (20) is assured to increase at
time t∗ [17]. The construction with the analytic proof can
be found in the Supplemental Material. Yet, in Fig. 1, we
plot the dynamical behavior of EAB|C for the ENM model
(23) with α = 2 and c = 1

2 after setting ρABC , so that the
non-Markovianity of dynamics can be clearly witnessed at
time t∗ = 1 (and t∗ = 0.01 within the inset).

Conclusions. In this Rapid Communication we discuss
possibilities and limitations to detect non-Markovianity in
qubit systems and beyond. It is shown that a very general

FIG. 1. Negativity EAB|C as a function of time t (in arbitrary
units) for the eternally non-Markovian qubit dynamics (23) with α =
2 and c = 1/2. The initial state ρABC has been set as in Eq. (16) with
probabilities pi and states ρ

AB1
i chosen according to the constructive

method of Bylicka et al. [17], leading to violation of Eq. (2) for a
specific time t∗ > 0. The plot shows detection of non-Markovianity
at t∗ = 1 (t∗ = 0.01 in the inset), which is marked on the axis and
with a dashed red vertical line.

class of quantities based on contractive functions fails to
detect non-Markovianity of all qubit evolutions. This includes
widely studied quantifiers such as trace distance, fidelity, and
quantum relative entropy. It is shown that all of them fail
to witness non-Markovianity in a certain class of evolutions,
which includes eternal non-Markovian dynamics exhibiting
non-Markovianity at all times t > 0.

If entangled systems are employed to witness non-
Markovianity, we show that the situation strongly depends on
the number of particles used. Surprisingly, for three particles
A, B, and C it is possible to witness non-Markovianity of all
invertible dynamics of system A by considering entanglement
in the cut AB|C. We show this explicitly for entanglement
negativity, a computable measure of entanglement, which is
nonmonotonic for any non-Markovian invertible dynamics
and a suitably chosen initial state. For single-qubit evolutions
our results apply also when the dynamics is not invertible. As
an example, we show results for the eternal non-Markovianity
model, where the nonmonotonic behavior of negativity can be
observed at arbitrary small times.

Our results demonstrate that well-established entanglement
quantifiers can be useful as faithful non-Markovianity wit-
nesses for very general classes of evolutions. An important
question left open in this work is whether entanglement
measures can universally witness non-Markovianity of all
evolutions, incuding noninvertible dynamics beyond qubits.
Recalling that entanglement theory is a prominent example
of more general quantum resource theories, the fundamental
connection between entanglement and non-Makovianity pre-
sented in our work can also be useful for the development of
a resource theory of non-Markovianity [42,43].
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