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Let’s discuss a complete set of relations between velocity, density, and pres-
sure fluctuations in a fluid. From the outset let’s look steadily at our goal: a self
consistent set of 3 equations governing velocity, density, and pressure fluctua-
tions in a neutral gas. This is what we want. So, we’ll regard the fluctuations
as first order perturbation to the equilibrium quantities, the relations between
which we suppose we already know, even know them by name: Newton’s second
law for fluids, the equation of continuity, and an equation of state (adiabatic):

ρ

{
∂v

∂t
+ (v · ∇)v

}
= −∇p Newton′s Second Law for F luids (1)

∂ρ

∂t
+∇ · (ρv) = 0 Equation of Continuity (2)

pV γ = Const. Equation of “State′′. (3)

Beside describing their equilibria (can we agree that we won’t treat the
case of equilibrium flow, just to make life easy?), these equations tell the fate
of small fluctuations in pressure, density, and velocity about their equilibrium
values. One can see this by first making the following approximation for each
of ρ, p, and v,

p ≈ po + p1, (4)

where we suppose that p1/po, the ratio of the amplitude of the pressure fluctu-
ations to atmospheric pressure, is � 1. We further suppose that that each of
these first order quantities do in fact propagate as

p1(x, t) = p1e
i(kx−ωt), (5)

and so on for the the other variables, where for simplicity we have assumed a
plane wave which propagates in the the x̂ direction (i.e., v1 → v1 ).

It is important to note that we are looking for wave propagation in the same
direction that the motion of the medium occurs—that is, we are looking for
longitudinal waves.

The game we are here playing is to use the system of equations above to
arrive at a new system of equations which the perturbed, first order quantities
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are bound to satisfy, supposing that there is a simple wave solution. If we can
solve such a system of equations, than we will have arrived at what is called
a “dispersion relation” for the wave, which is simply a function ω(k), which
describes how the frequency depends on the wavelength of the perturbations.
Oh and, we will have justified our assumptions, or at least arrived at a definite
answer which may be put to the test.

Let’s see how it works out for Newton’s Second Law. One writes

(ρo + ρ1)

(
∂v1
∂t

+ (v1
dv1
dx

)

)
= − d

dx
(po + p1), (6)

and throws out all the terms that are quadratic in small quantities. Such exter-
mination leaves out everything but

ρo
∂v1
∂t

= −dp1
dx

, (7)

where it has been assumed that there is no equilibrium bulk motion of the air
(vo = 0, and that there are no spatial gradients in any equilibrium quantity.
This ruthlessness is called “linearization” for obvious reasons. Recalling that
perturbed quantities vary in space and time like plane waves, this equation
becomes

ρoiωv1 = ikp1. (8)

In just the same way, the equations of continuity and equation of state yield

ρ1 = ρokv1/ω, (is this even possible?) (9)
p1
p0

= γ
ρ1
ρ0
. (10)

These three equations in the three first order quantities can be solved; for ex-
ample, solving the perturbed density, we arrive at(

ω2

k2
− γ p0

ρ0

)
ρ1 = 0, (11)

which implies that

vφ =
ω

k
=

√
γ
p0
ρ0
. (12)

Our guess was justified, and our reward: dispersionless plane waves.
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