
Introduction to
type theory and homotopy theory

Michael Shulman

January 24, 2012

1 / 47

Homotopy type theory

Homotopy
theory

Intensional
type theory

types have a homotopy theory

type theory is a language
for homotopy theory

• New perspectives on extensional vs. intensional
• Univalence: the correct identity types for a universe
• Homotopy levels: insight into proof-irrelevance
• Higher inductive types: quotients and free structures

2 / 47

Homotopy type theory

Homotopy
theory

Intensional
type theory

types have a homotopy theory

type theory is a language
for homotopy theory

• Type theory is a formal system, like ZFC, but. . .
• More computer-friendly
• Naturally constructive
• Can formalize homotopy theory more directly

• The same proof can apply to many homotopy theories
(equivariant, parametrized, sheaves, . . .)

2 / 47

Outline

1 A bird’s-eye view of type theory

2 A bird’s-eye view of homotopy theory

3 Path spaces and identity types

4 Homotopy type theory

5 Looking ahead

3 / 47

Typing judgments
Type theory consists of rules for manipulating judgments.
The most important judgment is a typing judgment:

x1 : A1, x2 : A2, . . . xn : An ` b : B

The turnstile ` binds most loosely, followed by commas.
This should be read as:

In the context of variables x1 of type A1, x2 of type A2, . . . ,
and xn of type An, the expression b has type B.

Examples ` 0 : N
x : N, y : N ` x + y : N

f : R→ R, x : R ` f (x) : R

f : C∞(R,R), n : N ` f (n) : C∞(R,R)

5 / 47

Dependent types

We consider types Ai ,B as also expressions, of type “Type”.

Examples ` N : Type
A : Type, x : A ` x : A

A : Type, B : A→ Type, x : A ` B(x) : Type
n : N ` {k : N | k < n} : Type

f : R→ R ` {x : R | f (x) = 0} : Type

A judgment x : A ` B(x) : Type, or a term B : A→ Type, is a
dependent type (over A).

6 / 47

Type constructors

A : Type, B : Type ` A× B : Type
A : Type, B : Type ` A→ B : Type
A : Type, B : Type ` A + B : Type

A : Type, B : A→ Type `
∏
x : A

B(x) : Type

A : Type, B : A→ Type `
∑
x : A

B(x) : Type

Each comes with rules for producing and using terms, e.g.

A : Type, B : Type, f : A→ B, x : A ` f (x) : B
A : Type, B : Type, x : A ` inl(x) : A + B
A : Type, B : Type, y : B ` inr(y) : A + B

7 / 47

Typing as programming

x1 : A1, x2 : A2, . . . xn : An ` b : B,

The term b can be viewed as a program, with inputs x1, . . . , xn
of types A1, . . . ,An and output of type B, that can be computed.

Thus:
• Type theory helps analyze programming languages.
• Type theory can be understood and verified by a computer.

8 / 47

Typing as proving

Sometimes, x1 : P1, x2 : P2, . . . xn : Pn ` q : Q means instead

Under hypotheses P1, P2, . . . , Pn,
the conclusion Q is provable (with proof q).

Examples

f : P → Q, x : P ` f (x) : Q ← modus ponens
x : P ` inl(x) : P or Q
y : Q ` inr(y) : P or Q

x : P, y : Q ` inl(x) : P or Q ← two different (?) proofs
x : P, y : Q ` inr(y) : P or Q ← of the same thing

9 / 47

Propositions as types
a.k.a. proofs as terms, or the Curry-Howard correspondence

Types ←→ Propositions

A× B ←→ P and Q
A + B ←→ P or Q

A→ B ←→ P implies Q∏
x : A B(x) ←→ (∀x : A)P(x)∑
x : A B(x) ←→ (∃x : A)P(x)

10 / 47

Predicate logic

Also, x1 : A1, x2 : A2, y1 : P1, y2 : P2 ` q : Q can mean

In the context of variables x1 of type A1 and x2 of type A2,
and under hypotheses P1 and P2,

the conclusion Q is provable (with proof q).

Examples

n : N, e : even(n) ` s(e) : odd(n + 1)

x : R, y : R ` comm(x , y) : (x + y = y + x)

x : R, nz : ¬(x = 0) ` inv(x) : (∃y : R)(x · y = 1)

11 / 47

Uses of type theory

Since type theory includes both programming and logic, it is a
natural context in which to prove things about programs.

x : input ` de(x) : (decrypt(encrypt(x)) = x)

x : user, y : moonPhase ` p(x , y) : ¬ crashes(Windows)

We can also develop mathematics in type theory, which can
then be formally verified by a computer.

g : Graph, p : Planar(g) ` c : Coloring(g,4) 4

x : N, y : N, z : N, n : N, f : (xn + yn = zn) ` w : (n ≤ 2 or z ≤ 1)

12 / 47

Type-theoretic foundations

Set theory

Logic

∧,∨,⇒,¬, ∀, ∃

Sets

×,+,→,
∏
,
∑

x ∈ A is a proposition

Type theory

Types

×,+,→,
∏
,
∑

Logic

∧,∨,⇒,¬,∀,∃

x : A is a typing judgment

13 / 47

Type theory and category theory

Type theory can be a syntax for describing objects and
morphisms in a category.

A : Type, B : Type ←→ Objects

x : A ` b : B ←→ Morphism A→ B

x1 : A1, x2 : A2 ` b : B ←→ Morphism A1 × A2 → B

A× B : Type ←→ Categorical product

A + B : Type ←→ Categorical coproduct

A→ B : Type ←→ Categorical exponential
...

Anything proven in type theory will hold in any such category.

14 / 47

Dependent types, categorically

Recall a dependent type is x : A ` B(x) : Type or B : A→ Type.
There are two ways to interpret this in a category:

• As a morphism A B−→ U, where U is a “universe” like “the
set of all small sets”.

• As a morphism p : |B| → A, where the type/object B(x) is
the “fiber” of p over x .

These are related by a pullback square:

|B| //

��

Ũ

��

A // U

15 / 47

Type theories and category theories

Simply typed λ-calculus ←→ Cartesian closed category
Dependent type theory ←→ Locally c.c. category

First-order predicate logic ←→ Boolean/Heyting category
Geometric logic ←→ Grothendieck topos

Higher-order logic ←→ Elementary topos
?? ←→ Homotopical category

Not too surprising
There is a type theory that goes in ??.

Surprising (to me)
That type theory was already invented by type theorists, long
before anyone realized it had to do with homotopy!

16 / 47

Sets, revisited

Ignoring considerations of size, a set is. . .
• . . . a collection of elements
• . . . together with a notion of when two elements are equal
• . . . which is transitive, symmetric, and reflexive.

“To define a set we prescribe. . . what we. . . must do in order
to construct an element of the set, and what we must do to
show that two elements are equal”
– Errett Bishop, “Foundations of Constructive Analysis”

18 / 47

Groupoids

A groupoid is. . .
• . . . a collection of “elements” or “points”
• . . . with, for all points x and y , a set hom(x , y) of

“isomorphisms” or “paths” from x to y
• . . . which can be composed, inverted, and have identities

Equivalently: a category in which all morphisms are invertible.

Examples

• Elements = sets, isomorphisms = bijections
• Elements = any set X , isomorphisms = only identities
• Elements = ?, isomorphisms = any group G

NB: Two points connected by a path are regarded as the same.

19 / 47

∞-groupoids
An∞-groupoid is
• . . . a collection of points
• . . . for all points x and y , a collection hom(x , y) of paths

from x to y
• . . . for all paths f and g from x to y , a collection hom(f ,g)

of 2-paths from f to g
• . . .
• with composition, inversion, identities, . . .

Examples

• Any set, with only identity n-paths for n > 0
• Any groupoid, with only identity n-paths for n > 1
• Points =∞-groupoids, . . . (more later)

20 / 47

The fundamental∞-groupoid

A topological space is a set together with a notion of
“closeness”, “continuity”, or “deformation”.

The fundamental∞-groupoid of a topological space X has
• As points, the points of X .
• As paths, the continuous paths [0,1]→ X .
• As 2-paths, continuous deformations between paths.
• . . .

We denote this by Π∞(X).

21 / 47

Π∞(?)

Let ? be the one-point topological space. Then Π∞(?) has:
• One point.
• One path from that point to itself.
• One 2-path from that path to itself.
• . . .

This is the same as the∞-groupoid arising from the set {?}.

22 / 47

Π∞(R)

For R the real numbers, Π∞(R) has:
• The real numbers x ∈ R as points. . .

• . . . but any two of them are connected by a path, so there is
essentially only one point.

• Paths between them. . .
• . . . but any two such paths are related by a deformation.

• . . .
Π∞(R) has essentially only one of all these things.
Thus it is equivalent to Π∞(?). The same is true for Π∞(Rn).

An∞-groupoid that is equivalent to Π∞(?) is called contractible.

23 / 47

Π∞(S1)

Let S1 = {(x , y) ∈ R2 | x2 + y2 = 1}. Then Π∞(S1) has:
• The points (x , y) ∈ S1 as points. . .

• . . . but any two of them are connected by a path, so there
might as well only be one point, say (1,0).

• Lots of paths from (1,0) to itself. Two such paths α and β
are inter-deformable exactly when they wind around the
circle an equal number of times.

• Thus there are essentially Z-many paths from (1,0) to itself.

• For n > 1, every n-path is trivial.

This is (arguably) the simplest groupoid that is not a set.

24 / 47

Π∞(S2)

Let S2 = {(x , y , z) ∈ R3 | x2 + y2 + z2 = 1}. Then Π∞(S2) has:
• Essentially only one point, say (1,0,0).
• Essentially only the constant path from (1,0,0) to itself.
• Essentially Z-many 2-paths from the constant path to itself

(how many times the deformation wraps over the surface).
• Essentially Z-many 3-paths from any 2-path to itself.
• Essentially two 4-paths from any 3-path to itself.
• Essentially two 5-paths from any 4-path to itself.
• Essentially twelve 6-paths from any 5-path to itself.
• . . . essentially 336 14-paths from any 13-path to itself . . .
• . . .

Computing these homotopy groups of spheres for all Sn is a big
part of classical homotopy theory.

25 / 47

Presenting∞-groupoids

There are many ways to define∞-groupoids. All are
“equivalent”, but most are technical. Instead, we can use:

Fact
Every∞-groupoid is equivalent to Π∞(X) for some X.

Fact
For nice X and Y , we have Π∞(X) ' Π∞(Y) if and only if X
and Y are homotopy equivalent (next slide).

Thus it suffices to think about topological spaces up to
homotopy equivalence.

26 / 47

Homotopy

A homotopy f ∼ g between continuous maps f ,g : X → Y is
• A path from f to g in the space Y X of continuous functions

(with a suitable topology)
• OR: a map H : X × [0,1]→ Y such that H(x ,0) = f (x) and

H(x ,1) = g(x).
• OR: a map H : X → Y [0,1] such that H(x)(0) = f (x) and

H(x)(1) = g(x).

A map f : X → Y is a homotopy equivalence if there exists
g : Y → X and homotopies g ◦ f ∼ idX and f ◦ g ∼ idY .

27 / 47

Homotopy types

“Topological spaces up to homotopy equivalence” were studied
long before “∞-groupoids”. They were called homotopy types.

Homotopy
theory

Intensional
type theory

homotopy (type theory)

(homotopy type) theory

28 / 47

The∞-groupoid of∞-groupoids

For spaces X and Y , let Equiv(X ,Y) ⊆ Y X be the subspace
consisting of the homotopy equivalences.

Definition
The∞-groupoid of∞-groupoids has
• As points, topological spaces
• As paths, homotopy equivalences (= points of Equiv(X ,Y))
• As 2-paths, paths in Equiv(X ,Y)

• As 3-paths, 2-paths in Equiv(X ,Y)

• . . .

29 / 47

Categories with homotopies

Recall:

?? ←→ Homotopical category

What structure on the category of topological spaces
encapsulates its homotopy theory?
• The interval [0,1].
• The class of homotopy equivalences.
• For each X , there is a cylinder Cyl(X) := X × [0,1].
• For each Y , there is a path space Paths(Y) := Y [0,1].

These can all work — and they work best when combined!
But Paths(Y) matches the type theory best.

31 / 47

Path objects

A category has path objects if each object Y has a factorization
of the diagonal

Y //

∆
$$IIIIIIIIII Paths(Y)

��

Y × Y

satisfying certain axioms.

Examples

• Topological spaces, with Paths(Y) := Y [0,1].
• Chain complexes, with Paths(Y) := Hom(I,Y)

• Any category, with Paths(Y) := Y (trivial homotopy theory)

32 / 47

Equality

In logic, formulas are built from atomic formulas using
connectives and quantifiers:

∧,∨,⇒,¬,>,⊥,∀, ∃

The most basic atomic formula is equality (x = y).

In type theory:

propositions ←→ types
connectives and quantifiers ←→ type constructors

equality ←→ ??

33 / 47

Identity types

We may include a type constructor

A : Type, x : A, y : A ` (x = y) : Type

This is an equality type or identity type.

There is a clean, concise, and computational way to obtain the
rules for identity types, as an “inductive family” (Martin-Löf).

But this method doesn’t imply the rule

x : A, y : A, p : (x = y), q : (x = y) ` ?: (p = q)

If we add this additional rule, we have extensional type theory;
otherwise it is intensional.

34 / 47

Identity types are path objects

The dependent type x : A, y : A ` (x = y) : Type must be
interpreted by:

A //

""FFFFFFFFF |x = y |

��

A× A

Theorem (Awodey, Gambino, Garner, van den Berg, Lumsdaine, Warren)

Path objects exactly model identity types.

The trivial path objects Y → Y × Y model extensional identity
types. Others are intensional.

35 / 47

Homotopy theory in type theory

We can define internally in type theory:
• When a type is contractible.
• When a type is “set-like”, or “groupoid-like”, etc.
• When a function is a homotopy equivalence.
• The type of homotopy equivalences Equiv(X ,Y)

• Loop spaces, homotopy groups, fibration sequences, . . .

37 / 47

The univalence axiom

Recall that a type is a term of type Type.

` A : Type

Thus, we have identity types:

A : Type, B : Type ` (A = B) : Type

What should this be? The standard rules don’t determine it.

The univalence axiom (Voevodsky)
For types A and B, the identity type (A = B) is homotopy
equivalent to the type Equiv(A,B) of homotopy equivalences
between A and B.

38 / 47

The meaning of univalence

Univalence means that

Under the interpretation of types as∞-groupoids, the type Type
corresponds to the∞-groupoid of∞-groupoids.

Some consequences of univalence:
• If there is a homotopy equivalence f : A→ B, then there is

a path p : (A = B).
• The subtype of set-like types in Type corresponds to the

groupoid of sets.
• Dependent functions are strongly extensional (Voevodsky).

39 / 47

A simple use of univalence

In a “set-like” type, any path is deformable to the identity.

Theorem
Type is not set-like. Hence, not all types are set-like.

Proof.

1 Let bool := {>,⊥} be a two-element type.
2 The “flip” map f : bool→ bool, defined by f (⊥) := > and

f (>) := ⊥, is a homotopy equivalence that is not homotopic
to the identity.

3 Hence, by univalence, it gives a path pf : (bool = bool) in
Type that is not deformable to the identity.

40 / 47

Modeling univalence

Theorem (Voevodsky)
There is a model of type theory in∞-groupoids, for which the
univalence axiom holds.

• This is nontrivial (only) because of strictness and
coherence issues.

• Many other categories (called “(∞,1)-toposes”) contain
objects like “the∞-groupoid of∞-groupoids”, but we don’t
yet know how to overcome the technical issues there.

41 / 47

Inductive types
A large class of type constructors are inductive types.

Example
N is inductively generated by 0 : N and s : N→ N.
⇔ Every n : N is generated in a unique way from 0 and s.
⇔ We can define functions by recursion on N.
⇔ We can prove theorems by induction on N.

Example
The disjoint union A + B is inductively generated by
inl : A→ A + B and inr : B → A + B.
⇔ Every x : A + B arises from exactly one of inl and inr.
⇔ We can define functions by cases on A + B.
⇔ We can prove theorems by cases on A + B.

42 / 47

Higher inductive types

We can extend this to homotopy types (Lumsdaine–S.).

Example
S1 is inductively generated by b : S1 and a path ` : (b = b).
⇔ Every point, path, or higher path of S1 is “generated

uniquely” from b and `.
⇔ We can define functions S1 → A “recursively” or “by

cases”, by giving a point fb : A and a path f` : (fb = fb).
⇔ We can prove theorems by “induction” on S1.

Example
S2 is inductively generated by c : S2 and a 2-path σ : (idc = idc).

43 / 47

Π∞(S1)

Recall S1 is inductively generated by b : S1 and ` : (b = b).

Theorem (S.)
Assuming the univalence axiom, the identity type (b = b) is
equivalent to Z.

• Thus, paths from b to b are classified by integers, and
there are no nontrivial higher paths.

• In homotopy-theoretic language, this implies π1(S1) ∼= Z.
• The proof is completely written inside of type theory, and

has been fully verified by the computer proof assistant Coq.

44 / 47

Looking ahead: this quarter

1 Some type theory, precisely
2 Programming type theory in the proof assistant Coq
3 Some homotopy theory, precisely
4 Programming homotopy type theory in Coq
5 Categorical models of homotopy type theory
6 . . .

46 / 47

Suggested Homework

1 Install Coq: http://coq.inria.fr
2 Learn a bit of functional programming.
3 Learn a bit of category theory.

47 / 47

http://coq.inria.fr

