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Type-theoretic foundations

Set theory

Logic

∧,∨,⇒,¬, ∀, ∃

Sets

×,+,→,
∏
,
∑

x ∈ A is a proposition

Type theory

Types

×,+,→,
∏
,
∑

Logic

∧,∨,⇒,¬,∀,∃

x : A is a typing judgment
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Type theory is programming

For now, think of type theory as a programming language.
• Closely related to functional programming languages like

ML, Haskell, Lisp, Scheme.
• More expressive and powerful.
• Can manipulate “mathematical objects”.
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Typing judgments
Type theory consists of rules for manipulating judgments.
The most important judgment is a typing judgment:

x1 : A1, x2 : A2, . . . xn : An ` b : B

The turnstile ` binds most loosely, followed by commas.
This should be read as:

In the context of variables x1 of type A1, x2 of type A2, . . . ,
and xn of type An, the expression b has type B.

Examples ` 0 : N
x : N, y : N ` x + y : N

f : R→ R, x : R ` f (x) : R

f : C∞(R,R), n : N ` f (n) : C∞(R,R)

5 / 77



Type constructors

The basic rules tell us how to construct valid typing judgments,
i.e. how to write programs with given input and output types.
This includes:

1 How to construct new types (judgments Γ ` A : Type).
2 How to construct terms of these types.
3 How to use such terms to construct terms of other types.

Example (Function types)

1 If A : Type and B : Type, then A→ B : Type.
2 If x : A ` b : B, then λxA.b : A→ B.
3 If a : A and f : A→ B, then f (a) : B.
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Derivations

We write these rules as follows.

` A : Type ` B : Type
` A→ B : Type

x : A ` b : B

` λxA.b : A→ B

` f : A→ B ` a : A
` f (a) : B
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Derivations in Context

More generally, we allow an arbitrary context
Γ = (x1 : A1, . . . , xn : An) of typed variables.

Γ ` A : Type Γ ` B : Type
Γ ` A→ B : Type

Γ, x : A ` b : B

Γ ` λxA.b : A→ B

introduction

Γ ` f : A→ B Γ ` a : A
Γ ` f (a) : B

elimination
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Type theory as programming

This is just a mathematical syntax for programming.

int square(int x) { return (x * x); }

def square(x):
return (x * x)

square :: Int -> Int
square x = x * x

fun square (n:int):int = n * n

(define (square n) (* n n))

square := λxZ.(x ∗ x)
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Evaluation

The rules also tell us how to evaluate or compute terms.
The general rule is:
• introduction plus elimination computes to substitution.

Γ, x : A ` b : B Γ ` a : A

Γ ` (λxA.b)(a)→β b[a/x ]

Here b[a/x ] means b with a substituted for x .

For historical reasons, this is called β-reduction.

square(2) ≡ (λxZ.(x ∗ x))(2)→β (x ∗ x)[2/x ] ≡ 2 ∗ 2
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Interlude

(Coq)
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Functions of many variables

A function of two variables can be represented as a function of
one variable which returns a function of another variable.

foo := λxZ.
(
λyZ.(2 ∗ x + y ∗ y)

)
foo(3)(1) →β

(
λyZ.(2 ∗ x + y ∗ y)

)
[3/x ](1)

≡
(
λyZ.(2 ∗ 3 + y ∗ y)

)
(1)

→β (2 ∗ 3 + y ∗ y)[1/y ]
≡ (2 ∗ 3 + 1 ∗ 1)

This is called currying (after Haskell Curry).
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Functions of many variables
A simplified notation for abstractions:

foo := λxZ.
(
λyZ.(2 ∗ x + y ∗ y)

)
≡ λxZyZ.(2 ∗ x + y ∗ y)

And for types,→ associates to the right:

A→ B → C means A→ (B → C)

And for application:

foo(3)(1) foo 3 1

That is, juxtaposition means application, which associates to
the left:

foo 3 1 means (foo 3) 1
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Interlude

(Coq)
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Another example: disjoint unions

Γ ` A : Type Γ ` B : Type
Γ ` A + B : Type

Γ ` a : A
Γ ` inl(a) : A + B

Γ ` b : B
Γ ` inr(b) : A + B

Γ ` C : Type
Γ ` p : A + B Γ, x : A ` cA : C Γ, y : B ` cB : C

Γ ` case(p, xA.cA, yB.cB) : C
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Case switching

Γ ` C : Type
Γ ` p : A + B Γ, x : A ` cA : C Γ, y : B ` cB : C

Γ ` case(p, xA.cA, yB.cB) : C

switch(p) {
if p is inl(x):
do cA with x

if p is inr(y):
do cB with y

}

Don’t worry about the exact syntax of “case”. Everyone does it
differently, and we’ll mostly use Coq’s syntax (later).
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Evaluating case switches

Γ ` C : Type Γ ` p : A + B
Γ, x : A ` cA : C Γ, y : B ` cB : C Γ ` a : A

Γ ` case(inl(a), xA.cA, yB.cB)→β cA[a/x ]

Γ ` C : Type Γ ` p : A + B
Γ, x : A ` cA : C Γ, y : B ` cB : C Γ ` b : B

Γ ` case(inr(b), xA.cA, yB.cB)→β cB[b/y ]
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Interlude

(Coq)
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The unit type

Γ ` unit : Type Γ ` tt : unit

Γ ` p : unit Γ ` C : Type Γ ` c : C
Γ ` triv(p, c) : C

If we know how to produce a C using all the possible inputs that
can go into a unit, then we can produce a C from any unit.

Γ ` C : Type Γ ` c : C
Γ ` triv(tt, c)→β c

When we evaluate the eliminator on a term of canonical form,
we obtain the data that went into the eliminator associated to
that form.
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Interlude

(Coq)
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Polarity

Negative types Positive types

A→ B A + B∏
x : A B(x) A× B

unit

empty∑
x : A B(x)

• A negative type is characterized by its eliminations.
1 We use a term by applying it.
2 We construct a term by saying what it does when applied.

• A positive type is characterized by its introductions.
1 We construct a term with a constructor.
2 We use a term by saying what to do with each constructor.
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Polarity

Negative types Positive types

A→ B A + B∏
x : A B(x) A× B

unit

empty∑
x : A B(x)

NB: This is an oversimplification; some or all of these “positive
types” could also be presented negatively. But for us, they will
be positive.
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Types in Coq

Coq uses a type theory called the predicative Calculus of
(co)Inductive Constructions. There are only two ways to
construct types in Coq.

1 Dependent product (negative).
• Includes A→ B as a special case; more later
• Constructed with fun x => ...
• Applied with juxtaposition f x

2 Inductive type families (positive).
• Built with constructors like inl, inr, tt.
• Eliminated with match.
• More details later.

3 Universes (sorts) like Type (unpolarized).
4 Coinductive type families (negative).
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Exercise #1
Exercise
Define the cartesian product A× B as a positive type.

Γ ` A : Type Γ ` B : Type
Γ ` A× B : Type

Γ ` a : A Γ ` b : B
Γ ` (a,b) : A× B

Γ ` C : Type Γ ` p : A× B Γ, x : A, y : B ` c : C

Γ ` unpack(p, xA yB.c) : C

Γ ` C : Type Γ ` a : A Γ ` b : B Γ, x : A, y : B ` c : C

Γ ` unpack((a,b), xA yB.c)→β c[a/x ,b/y ]
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Projections

For p : A× B:

fst(p) := unpack(p, xA yB.x) : A

snd(p) := unpack(p, xA yB.y) : B
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Interlude

(Coq)
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Exercise #2

Exercise
Define the empty type ∅ as a positive type.

Γ ` ∅ : Type

(no introduction rule)

Γ ` p : ∅ Γ ` C : Type
Γ ` abort(p) : C

(no computation rule)
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Structural rules

We also need a few rules for “how to get going” with typing
judgments.

Γ ` A : Type
Γ, x : A ` x : A

start (x /∈ Γ)

Γ ` A : Type Γ ` b : B
Γ, x : A ` b : B

weakening (x /∈ Γ)

Γ ` a : A Γ ` A↔β B
Γ ` a : B

conversion

(↔β is the equivalence relation generated by→β)
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Now you know something!

Definition
The structural rules plus the type constructor→ (and nothing
else) form the simply typed lambda calculus “λ→”.

We can of course add other constructors. Sometimes people
write λ×→ for λ→ with cartesian products and unit, etc.
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Outline

1 Programming in type theory

2 Logic in type theory

3 Dependent types

4 Type theory with logic

5 Pure type systems
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Logic in the style of type theory

We can also read a typing judgment

x1 : P1, . . . , xn : Pn ` q : Q

as a truth judgment

Under hypotheses P1, P2, . . . , Pn,
the conclusion Q is provable.
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Logical connectives

The basic rules tell us how to construct valid truth judgments.
This includes:

1 How to construct new propositions.
2 How to prove such propositions.
3 How to use such propositions to prove other propositions.

Example (Implication)

1 If P and Q are propositions, then so is P ⇒ Q.
2 If assuming P, we can prove Q, then we can prove P ⇒ Q.
3 If we can prove P and P ⇒ Q, then we can prove Q.
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Implication

To emphasize this viewpoint, we write Prop rather than Type.

Γ ` P : Prop Γ ` Q : Prop
Γ ` (P ⇒ Q) : Prop

Γ, x : P ` q : Q

Γ ` λxP .q : P ⇒ Q

Γ ` f : P ⇒ Q Γ ` p : P
Γ ` f (p) : Q
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Conjunction

(P ∧Q means “P and Q”)

Γ ` P : Prop Γ ` Q : Prop
Γ ` (P ∧Q) : Prop

Γ ` p : P Γ ` q : Q
Γ ` (p,q) : P ∧Q

Γ ` R : Prop Γ ` s : P ∧Q Γ, x : P, y : Q ` r : R

Γ ` unpack(s, xP yQ.r) : R
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Disjunction

(P ∨Q means “P or Q”)

Γ ` P : Prop Γ ` Q : Prop
Γ ` (P ∨Q) : Prop

Γ ` p : P
Γ ` inl(p) : P ∨Q

Γ ` q : Q
Γ ` inr(q) : P ∨Q

Γ ` R : Prop
Γ ` s : P ∨Q Γ, x : P ` rP : R Γ, y : Q ` rQ : R

Γ ` case(s, xP .rP , yQ.rQ) : R
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Propositions as types
a.k.a. proofs as terms, or the Curry-Howard correspondence

The same rules of programming apply to proving.

Types ←→ Propositions

A× B ←→ P and Q
A + B ←→ P or Q

A→ B ←→ P implies Q
unit ←→ > (true)
∅ ←→ ⊥ (false)

The program corresponding to a proof computes the “essence”
of that proof.
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Proof terms

Lemma
For any P and Q, we have P ⇒ (Q ⇒ P).

Proof.
Assume P. Now if we assume Q, then P by assumption, so
Q ⇒ P. Thus, P ⇒ (Q ⇒ P).

x : P ` x : P
(start)

x : P, y : Q ` x : P
(weakening)

x : P ` λyQ.x : (Q ⇒ P)
(introduction)

` λxPyQ.x : P ⇒ (Q ⇒ P)
(introduction)
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Cut elimination

Suppose we prove a lemma:

...
` p : P

...
` f : P ⇒ Q

` f (p) : Q
(elimination)
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Cut elimination
But the way to prove P ⇒ Q is to assume P, then prove Q.

...
` p : P

...
x : P ` q : Q

` λxP .q : P ⇒ Q
(intro)

` (λxP .q)(p) : Q
(elimination)

And since (λxP .q)(p)→β q[p/x ], this proof reduces to

...
p : P

...
q[p/x ] : Q
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Negation
We define the negation of P by

¬P := (P ⇒ ⊥).

Lemma
For any P, we have P ⇒ ¬(¬P).

Proof.
Suppose P. To prove ¬(¬P), suppose ¬P. Then since P and
¬P, we have a contradiction; hence ¬(¬P).

x : P, f : (P ⇒ ⊥) ` f (x) : ⊥
x : P ` λf (P⇒⊥).f (x) : ((P ⇒ ⊥)⇒ ⊥)

(intro)

` λxP f (P⇒⊥).f (x) : P ⇒ ((P ⇒ ⊥)⇒ ⊥)
(intro)
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Interlude

(Coq)
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Intuitionistic logic

BUT the logic we get this way is not quite classical logic:

There is no way to write a program to prove A ∨ (¬A).

What we have is called intuitionistic or constructive logic.
By itself, it is weaker than classical logic. But. . .

1 Many things are still true, when phrased correctly.
2 A weaker logic means a wider validity (in more categories).
3 It is easy to add A ∨ (¬A) as an axiom.
4 There is also a “double-negation translation”. . .

42 / 77



Intuitionistic logic

BUT the logic we get this way is not quite classical logic:

There is no way to write a program to prove A ∨ (¬A).

What we have is called intuitionistic or constructive logic.
By itself, it is weaker than classical logic. But. . .

1 Many things are still true, when phrased correctly.
2 A weaker logic means a wider validity (in more categories).
3 It is easy to add A ∨ (¬A) as an axiom.
4 There is also a “double-negation translation”. . .

42 / 77



Exercise #3

Exercise
Write a program that proves ¬(¬(A ∨ (¬A))).
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Outline

1 Programming in type theory

2 Logic in type theory
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4 Type theory with logic

5 Pure type systems
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Dependent types

(Back to programming.)

We consider types Ai ,B as also expressions, of type “Type”.

Examples ` N : Type
A : Type, x : A ` x : A

A : Type, B : A→ Type, x : A ` B(x) : Type
n : N ` {k : N | k < n} : Type

f : R→ R ` {x : R | f (x) = 0} : Type

A judgment x : A ` B : Type, or a term B : A→ Type, is a
dependent type over A. (The two are interconvertible by
λ-abstraction.)
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Whence dependent types?

We can construct dependent types as terms of type Type.

Example
Let bool := unit + unit, and define

C := λbbool.case(b, xunit.Z, yunit.R≥0)

: bool→ Type

Then

C(inl(tt))→β Z
C(inr(tt))→β R≥0
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Interlude

(Coq)
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Dependent products

Given B : A→ Type, a term b :
∏

x : A B(x) can be thought of as
1 An A-tuple (bx )x : A with each bx : B(x), or
2 A function b assigning to each x : A an element of B(x).

This is a dependently typed function: its output type (not just its
output value) depends on its input value.

Remark
If B(x) is independent of x , then

∏
x : A B(x) reduces to A→ B.
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Dependent products

Γ ` A : Type Γ, x : A ` B : Type
Γ `

∏
x : A B : Type

Γ, x : A ` b : B

Γ ` λxA.b :
∏

x : A B

Γ ` f :
∏

x : A B Γ ` a : A
Γ ` f (a) : B[a/x ]

Γ, x : A ` b : B Γ ` a : A

Γ ` (λxA.b)(a)→β b[a/x ]
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Γ ` A : Type Γ

, x : A

` B : Type
Γ ` A→ B : Type

Γ, x : A ` b : B

Γ ` λxA.b : A→ B

Γ ` f : A→ B Γ ` a : A
Γ ` f (a) : B

[a/x ]
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Interlude

(Coq)
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Dependent sums

Given B : A→ Type, a term p :
∑

x : A B(x) consists of
1 a term a : A, and
2 a term b : B(a).

We think of
∑

x : A B(x) as the disjoint union of the types B(x)
over all x : A.

Remark
If B(x) is independent of x , then

∑
x : A B(x) reduces to A× B.
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Dependent sums

Γ ` A : Type Γ, x : A ` B : Type
Γ `

∑
x : A B : Type

Γ ` a : A Γ ` b : B[a/x ]

Γ ` (a,b) :
∑

x : A B

Γ ` C : Type Γ ` p :
∑

x : A B Γ, x : A, y : B ` c : C

Γ ` unpack(p, xA yB.c) : C

Γ ` C : Type
Γ ` a : A Γ ` b : B[a/x ] Γ, x : A, y : B ` c : C

Γ ` unpack((a,b), xA yB.c)→β c[a/x ,b/y ]
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Projections

For p :
∑

x : A B:

pr1(p) := unpack(p, xA yB.x) : A

pr2(p) := unpack(p, xA yB.y) : B[pr1(p)/x ]

← oops!

Γ ` C : Type Γ ` p :
∑

x : A B Γ, x : A, y : B ` c : C
Γ ` unpack(p, x y .c) : C

We need to allow C to depend on p.
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Dependent sums, revised

Γ ` A : Type Γ, x : A ` B : Type
Γ `

∑
x : A B : Type

Γ ` a : A Γ ` b : B[a/x ]

Γ ` (a,b) :
∑

x : A B

Γ,p :
∑

x : A B ` C : Type
Γ ` p :

∑
x : A B Γ, x : A, y : B ` c : C[(x , y)/p]

Γ ` unpack(p, x y .c) : C

Γ,p :
∑

x : A B ` C : Type
Γ ` a : A Γ ` b : B[a/x ] Γ, x : A, y : B ` c : C[(x , y)/p]

Γ ` unpack((a,b), x y .c)→β c[a/x ,b/y ]
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Dependent sums, revised

Γ ` A : Type Γ

, x : A

` B : Type
Γ ` A× B : Type

Γ ` a : A Γ ` b : B

[a/x ]

Γ ` (a,b) : A× B

Γ,p : A× B ` C : Type
Γ ` p : A× B Γ, x : A, y : B ` c : C[(x , y)/p]

Γ ` unpack(p, x y .c) : C

Γ,p : A× B ` C : Type
Γ ` a : A Γ ` b : B

[a/x ]

Γ, x : A, y : B ` c : C[(x , y)/p]

Γ ` unpack((a,b), x y .c)→β c[a/x ,b/y ]
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Strong eliminators

With dependent types, we need to revise all the eliminators to
allow the output type to depend on the input value.

Example
C := λbbool.case(b, xunit.Z, yunit.R≥0)

: bool→ Type

We need the strong eliminator in order to define

b : bool ` case
(

b, xunit.(−3), yunit.
√

2
)

: C(b)

` λbbool . . . :
∏

b : bool C(b)
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Interlude

(Coq)
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Outline

1 Programming in type theory

2 Logic in type theory

3 Dependent types

4 Type theory with logic

5 Pure type systems
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Predicate logic

Dependent types + propositions as types = predicate logic!

Types ←→ Propositions∏
x : A B(x) ←→ (∀x : A)P(x)∑
x : A B(x) ←→ (∃x : A)P(x)
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Universal quantifiers

Γ ` A : Type Γ, x : A ` P : Prop
Γ ` (∀x : A)P : Prop

Γ, x : A ` p : P

Γ ` λxA.p : (∀x : A)P

Γ ` f : (∀x : A)P Γ ` a : A
Γ ` f (a) : P[a/x ]
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Existential quantifiers

Γ ` A : Type Γ, x : A ` P : Prop
Γ ` (∃x : A)P : Prop

Γ ` a : A Γ ` p : P[a/x ]

Γ ` (a,p) : (∃x : A)P

Γ ` Q : Prop Γ ` s : (∃x : A)P Γ, x : A,p : P ` q : Q

Γ ` unpack(s, xApP .q) : Q
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Propositions versus types

We now have to face the question:

How do we distinguish the types from the propositions?

Several possibilities:

1 Keep them separate, but analogous. We have sorts “Type”
and “Prop”, with separate constructors→ and⇒, × and ∧,∏

and ∀, etc.
2 Make them identical. Every proposition is a type (whose

inhabitants are its proof-terms or “witnesses”) and every
type is a proposition (the proposition that it is inhabited).

3 Consider propositions as a subclass of types. Usually, they
are the types containing at most one inhabitant
(“proof-irrelevance”).
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Option 1: Separate, but analogous

The Good:
• Flexible: we can later on interpret Prop to be Type or

something else.
• Good for verified programming: can automatically discard

the proofs of correctness (those in sort Prop) to obtain a
working program.

• Can be internalized in weird places like hyperdoctrines and
quasitoposes.

The Bad:
• Some seeming redundancy (can be mostly eliminated).
• Doesn’t give precise control over what propositions are.
• Need extra axioms and rules to relate Type and Prop; easy

to get wrong.
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Option 2: Propositions ≡ Types

The Good:
• Irreducibly constructive: every existence “proof” comes

with a witness.
• In particular, the “axiom of choice” becomes a theorem.
• Good for studying proofs (different proofs remain

distinguishable).

The Bad:
• Can’t express the distinction between constructive and

nonconstructive existence.
• Questionably compatible with classical mathematics.
• Doesn’t correctly interpret in most categories (including

homotopy theory).
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Option 3: Propositions ( Types

The Good:
• Distinguishes constructive and nonconstructive existence.
• Interprets correctly into classical mathematics.
• Internalizes in categories (and homotopy theory).
• Some types are automatically propositions (axiom of

unique choice).
• Identifies internally the “irrelevant” types to discard.
• Can be implemented “inside” of options 1 or 2.

The Bad:
• Not maximally flexible (doesn’t do hyperdoctrines or

quasitoposes).
• All proofs of a proposition are identified (but to distinguish

them, we can use the corresponding type).
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Propositions versus Types

• Coq chooses option 1: separate but analogous.
• Agda (another computer proof assistant) chooses option 2:

make them identical.
• Homotopy type theory uses option 3: propositions are a

subclass of types.

Thus, we can do homotopy type theory in Coq or Agda.
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Outline

1 Programming in type theory

2 Logic in type theory

3 Dependent types

4 Type theory with logic

5 Pure type systems
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Sorts

“Definition”
A type is a syntactic object t which can appear on the
right-hand side of a typing judgment x : t .

“Definition”
A sort is a syntactic object s which can appear on the
right-hand side of a typing judgment t : s, where t is a type.

NB

• These “definitions” are not really standard.
• Logicians say “sort” for what type theorists call a “type”.
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Pure type systems

A pure type system is specified by
1 A collection of sorts.
2 A collection of axioms s1 : s2, for sorts s1, s2.
3 The structural rules (start, weakening, conversion), with

Type replaced by any sort.
4 A collection of dependency relations (s1, s2, s3), each of

which gives a dependent product:

Γ ` A : s1 Γ, x : A ` B : s2

Γ `
∏

x : A B : s3

Can add positive types, with similar sorting relations.
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Simply typed lambda calculus, revisited
Example
The simply typed lambda calculus is a pure type system with

1 Two sorts, Type (usually written ∗) and �.
2 One axiom, Type : �.
3 One dependency relation (Type,Type,Type):

Γ ` A : Type Γ, x : A ` B : Type
Γ `

∏
x : A B : Type

• With the only relation being (Type,Type,Type), there are
no nontrivial dependent types.

• � is mainly technical here: we need Type : � to apply the
start rule to type variables. Type is the only inhabitant of �,
and � has (and needs) no type.
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Polymorphism
If we add to STλC the relation (�,Type,Type), we obtain
second-order polymorphic type theory (“λ2”).
• Type is still the only inhabitant of �.
• Now types can involve products over Type, e.g.∏

A : Type

(A→ A).

An inhabitant of this type consists of, for every type A
(including itself), a function A→ A.

• Seems contradictory in set theory.
• Makes perfect sense in programming, e.g.

λATypexA.x :
∏

A : Type

(A→ A)

the polymorphic identity function.
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Higher kinds

Suppose we add the relation (�,�,�).
• Now � contains other things, like Type→ Type. We call

such things kinds, and their inhabitants constructors.
• For example, the operation constructing A→ B out of A

and B can now be internalized by a function

λATypeBType.(A→ B) : Type→ (Type→ Type)

With both (�,Type,Type) and (�,�,�), we have higher-order
polymorphic type theory (“System Fω” or “λω”).
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Dependent types

Finally, adding the relation (Type,�,�) gives us dependent
types. These eight combinations form the lambda cube:

λω λC

λ2

���
λP2

���

λω λPωpolymorphism

OO

λ→
���

λP
��� higher kinds

??������

dependent types
//

λC is the impredicative Calculus of Constructions.
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Universe levels

If we want to form products and sums over Type, but retain
set-theoretic (and homotopy-theoretic) models, we can ramify:

1 Sorts Type0,Type1,Type2, . . .

2 Axioms Typen : Typen+1

3 Relations (Typen,Typem,Typek ) for k ≥ max(m,n).

We may also want a subtyping rule:

Γ ` A : Typen

Γ ` A : Typen+1
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Separate but analogous

Back to types vs. propositions.

Simple predicate logic is the pure type system with
1 Three sorts, Type, Prop, and �.
2 Two axioms, Type : � and Prop : �.
3 Dependency relations:

(Type,Type,Type)  A→ B
(Prop,Prop,Prop)  P ⇒ Q
(Type,Prop,Prop)  (∀x : A),P(x)

(Type,�,�)  
∏

x : A P(x)

In either case, adding the extra axiom Prop : Type makes it
higher-order.
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The Calculus of Constructions

Coq’s type theory is the predicative Calculus of Constructions:
1 Sorts Prop and Typen for n ≥ 1.
2 Axioms Prop : Type1 and Typen : Typen+1.
3 Relations

• (Typen,Typem,Typek ) for k ≥ max(m,n),
• (Prop,Prop,Prop),
• (Typen,Prop,Prop), and
• (Prop,Typen,Typen).

4 Subtyping

Γ ` A : Typen

Γ ` A : Typen+1

Γ ` A : Prop
Γ ` A : Type0

Coq notates Type0 as “Set”. Note Prop ⊆ Set, but Prop /∈ Set.
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Universe polymorphism

When doing homotopy type theory in Coq, we generally ignore
Prop and Set, and use only the sorts Typen for n ≥ 1.

In Coq, all these sorts Typen are denoted simply “Type”. Coq
just checks after each proof that there is a consistent way to
assign levels to each occurrence of Type.

Coq is not smart enough to automatically “duplicate” a given
definition at more than one universe level. This occasionally
causes problems in homotopy type theory. Until Coq is smarter,
we can circumvent it by just turning off the consistency checks.
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Now you know a lot!

You know basically everything there is to know about Coq’s type
theory, except for inductive and coinductive types (next time).
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