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Type constructors

For every type constructor, we have rules for:
1 Constructing types
2 Constructing terms in those types (introduction)
3 Using terms in those types (elimination)
4 Eliminating introduced terms (computation)
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Negative types

The only negative type we will use is dependent product.
• For A : Type and B : A→ Type, we have

∏
x : A B(x) : Type.

• An element of
∏

x : A B(x) is a dependently typed function,
sending each x : A to an element f (x) : B(x).

• Coq syntax: forall (x:A), B x

When B(x) is independent of x , we have the function type

(A→ B) :=
∏

x : A B
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Positive types

Positive types are characterized by their introduction rules.

a : A
inl(a) : A + B

b : B
inr(b) : A + B

a : A b : B
(a,b) : A× B

tt : unit

The elimination and computation rules can then be deduced.
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Non-recursive inductive types

All positive types in Coq are inductive types.

Inductive W : Type :=
| constr1 : A1 -> A2 -> ... -> Am -> W
| constr2 : B1 -> B2 -> ... -> Bn -> W

|
...

| constrk : Z1 -> Z2 -> ... -> Zp -> W.

This command causes Coq to:
1 create a type W

2 create functions constr1 through constrk with the
specified types

3 allow an appropriate form of match syntax, and
4 implement appropriate computation rules.
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Examples

Inductive AplusB : Type :=
| inlAB : A -> AplusB
| inrAB : B -> AplusB.

Inductive AtimesB : Type :=
| pairAB : A -> B -> AtimesB.

Inductive unit : Type :=
| tt : unit

Inductive Empty_set : Type :=
.
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Parameters

With parameters we can define many related types at once.

Inductive sum (A B : Type) : Type :=
| inl : A -> sum A B
| inr : B -> sum A B.

Inductive prod (A B : Type) : Type :=
| pair : A -> B -> prod A B.

Implicit arguments and notations make these nicer to use.
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Interlude

(Coq)
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Dependent sums

In the presence of dependent types, the constructors can be
dependently typed functions.

Inductive sigT (A : Type) (P : A -> Type)
: Type :=

| existT : forall (a : A), P a -> sigT A P.

The type of existT is∏
a : A

(
P(a)→

∑
x : A P(x)

)
This is a function of two variables whose output is the type
being defined (

∑
x : A P(x)), but the type of the second input

depends on the value of the first.
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Strong eliminators
The elimination rule for an inductive type W is

Γ,p : W ` C : Type Γ ` p : W
Γ, (inputs of constr1) ` c1 : C[constr1(. . . )/p]

...
Γ, (inputs of constrk ) ` ck : C[constrk (. . . )/p]

Γ ` match(p, . . . ) : C

Note: In general, we must allow the output type C to depend on
the value p : W .

Example
p :
∑

x : A B ` pr1(p) := unpack(p, xA yB.x) : A

p :
∑

x : A B ` pr2(p) := unpack(p, xA yB.y) : B[pr1(p)/x ]
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The natural numbers
The natural numbers are generated by 0 and successor s.
That is, N is defined by the ways to construct a natural number.
Thus it is a positive type.

Inductive nat : Type :=
| zero : nat
| succ : nat -> nat.

A new feature: the input of the constructor succ involves
something of the type N being defined!

We intend, of course, that all elements of N are generated by
successively applying constructors.

0, s(0), s(s(0)), s(s(s(0))), . . .

13 / 49



The natural numbers
The natural numbers are generated by 0 and successor s.
That is, N is defined by the ways to construct a natural number.
Thus it is a positive type.

Inductive nat : Type :=
| zero : nat
| succ : nat -> nat.

A new feature: the input of the constructor succ involves
something of the type N being defined!

We intend, of course, that all elements of N are generated by
successively applying constructors.

0, s(0), s(s(0)), s(s(s(0))), . . .

13 / 49



The natural numbers

Γ,n : N ` C : Type Γ ` n : N
Γ ` c0 : C[0/n] Γ, x : N ` cs : C[s(x)/n]

Γ ` rec(n, c0, xN rC .cs) : C

But this is not much good; we need to recurse.

Γ,n : N ` C : Type Γ ` n : N
Γ ` c0 : C[0/n] Γ, x : N, r : C[x/n] ` cs : C[s(x)/n]

Γ ` rec(n, c0, xN rC .cs) : C

The variable r represents the result of the recursive call at x , to
be used the computation cs of the value at s(x).

rec(0, c0, xN rC .cs)→β c0

rec(s(n), c0, xN rC .cs)→β cs[n/x , rec(n, c0, xN rC .cs)/r ]
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Addition

We define addition by recursion on the first input.

0 + m := m
s(n) + m := s(n + m)

In terms of the rec eliminator, this is

n : N,m : N ` plus(n,m) := rec(n,m, xN rN.s(r))

• When n = 0, the result is m.
• When n is a successor s(x), the result is s(r).

(As before, r is the result of the recursive call at x .)
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Computing an addition

ss0 + sss0→β s(s0 + sss0)

→β s(s(0 + sss0))

→β s(s(sss0)) = sssss0.

plus(ss0, sss0)

:= rec(ss0, sss0, xN rC .s(r))

→β

(
s(r)

)[
s0/x , rec(s0, sss0, xN rC .s(r))/r

]
= s
(

rec(s0, sss0, xN rC .s(r))
)

→β s

((
s(r)

)[
0/x , rec(0, sss0, xN rC .s(r))/r

])
= s
(

s
(

rec(0, sss0, xN rC .s(r))
))

→β s(s(sss0)) = sssss0
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Interlude

(Coq)
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Fixpoints

The “Fixpoint” command in Coq allows traditional-style
programming with recursive functions.

Fixpoint fac (n : nat) : nat :=
match n with
| 0 => 1
| S n’ => (S n’) * fac n’

end.

But Coq checks that our functions could be written with “rec”
and therefore always terminate. This is necessary for logic to
be consistent!

Fixpoint oops : Empty_set :=
oops.
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The “limits” of Coq
With recursion over N in Coq, we can program:

1 Simple primitive recursive functions (+, ·, exp, . . . ).

2 Higher-order primitive recursive functions
(Exercise∗: Define the Ackermann function.)

3 Any algorithm that we can prove to terminate, e.g. by
well-founded induction on some measure.

With a coinductive nontermination monad, we can program:
4 All general recursive functions

(But we can only compute them some specified amount.)
With classical axioms (PEM, AC) we can program:

5 All mathematical (total) functions
(But they don’t compute—they may not be computable!)

NB: These naturals are unary, hence very inefficient. But we
can also define binary ones.
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Other recursive inductive types

Inductive list (A : Type) : Type :=
| nil : list A
| cons : A -> list A -> list A.

Contains nil, cons(a,nil), cons(a,cons(b,nil)), . . .

Inductive btree (A : Type) : Type :=
| leaf : A -> btree A
| branch : btree A -> btree A -> btree A.
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Programming with inductive datatypes

Fixpoint length {A : Type} (l : list A) : nat :=
match l with
| nil => 0
| cons _ l’ => S (length l’)

end.

length(cons(a, cons(b,nil)))→β s(length(cons(b,nil))

→β s(s(length(nil)))

→β s(s(0))
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Proof by induction

Recall that propositions are just types in some sort “Prop”.

Γ,n : N ` P : Prop Γ ` n : N
Γ ` c0 : P[0/n] Γ, x : N, r : P[x/n] ` cs : P[s(x)/n]

Γ ` rec(n, c0, xN rC .cs) : P

This is just classical proof by induction.

types ←→ propositions
programming ←→ proving

recursion ←→ induction
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Example

Theorem
Every natural number is either zero or the successor of some
other natural number.

Proof.
Let P(n) := (n = 0) +

∑
m : N(n = sm).

` n : N
` inl(refl0) : P(0) x : N, r : P(x) ` inr(x , reflsx ) : P(sx)

` P(n)
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Interlude

(Coq)
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Inductive proofs

Proof by induction is not something special about the natural
numbers. It applies to any inductively defined type, including

even non-recursive ones.
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Induction on lists

nil ++ ` := `

cons(a, `1) ++ `2 := cons(a, `1 ++ `2)

Theorem
length(`1 ++ `2) = length(`1) + length(`2)

Proof.
By induction on `1.
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1 When `1 is nil, we have
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= s
(
length(`′1 ++ `2)
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= s
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+ length(`2)

= length(cons(a, `′1)) + length(`2)

26 / 49



Outline

1 Non-recursive inductive types

2 Recursion and Induction

3 Inductive families

4 Identity types

27 / 49



Parameters versus indices

An inductive definition with parameters, like

Inductive list (A : Type) : Type :=
| nil : list A
| cons : A -> list A -> list A.

actually defines a dependent type

list : Type→ Type

But each type list(A) is separately inductively defined; the
constructors don’t “hop around” between different As.

Indices remove this restriction.
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Vectors with indices

A vector is a list whose length is specified in its type.

Inductive vec (A : Type) : nat -> Type :=
| vnil : vec A 0
| vcons : forall (n : nat),

A -> vec A n -> vec A (S n).

• For each type A, we inductively define the family of types
vec A n, as n ranges over natural numbers.

• The value of n used in the constructors can vary both
between constructors and within the inputs and outputs of
a single constructor.

Thus A is a parameter, n is an index.
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Programming with indices

For any A, we can define a dependently typed function

concat :
∏

n : N

(
vec(A,n)→

∏
m : N

(
vec(A,m)→ vec(A,n+m)

))
as follows:

concat(0, vnil,m, v) := v

concat
(

s(n), vcons(a, v1),m, v2

)
:= vcons(a, concat(n, v1,m, v2))

1 The first clause is well-typed because 0 + m↔β m.
2 The second is well-typed because s(n + m)↔β sn + m.

NB: In each “case”, the indices automatically get specialized to
the appropriate values.

The definition and behavior of “length” are built into the type.
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NB: In each “case”, the indices automatically get specialized to
the appropriate values.

The definition and behavior of “length” are built into the type.
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Induction with indices

Theorem
For vi : vec(A,ni), i = 1,2,3, we have

v1 ++ (v2 ++ v3) = (v1 ++ v2) ++ v3

Proof.
By induction on v1.

1 If v1 is vnil, then both sides are v2 ++ v3.
2 If v1 is vcons(a, v ′1), the LHS is vcons(a, v ′1 ++ (v2 ++ v3)),

and the RHS is vcons(a, (v ′1 ++ v2) ++ v3), which are equal
by the inductive hypothesis.
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Lists with indices

Any inductive definition with parameters:

Inductive listP (A : Type) : Type :=
| nilP : listP A
| consP : A -> listP A -> listP A.

can be rephrased using indices:

Inductive listI : Type -> Type :=
| nilI : forall A, listI A
| consI : forall A, A -> listI A -> listI A.

But the inductive principle we obtain is subtly different.
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Parameters versus indices

With parameters
The type listP(A) is separately inductively defined for every
A. Thus we can use induction to prove something about
listP(A) for some particular A.

With indices
The family of types listI(A) is jointly inductively defined for all
A. Thus we can only use induction to prove something about
listI(A) for all A at once.
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Interlude

(Coq)
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Parameters versus indices

Define sum : listP(N)→ N by

sum(nilP) := 0
sum(consP(a, `)) := a + sum(`)

Theorem
sum(`1 ++ `2) = sum(`1) + sum(`2)

Proof.
By induction. . .

With listI this is a non-starter.

Proving something about listI(N) by induction is like proving
“3 is prime” by induction on 3.
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What indices can do

Indices give a weaker induction principle because in general,
we can’t separate the values at different inputs.

In theory, we could have:

Inductive listI’ : Type -> Type :=
| nilI : forall A, listI’ A
| consI : forall A, A -> listI’ A -> listI’ A
| huh : listI’ (R× Z) -> listI’ N

Just like vec, we couldn’t define this type with parameters.
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Parameters versus indices

“If an index could be a parameter, it should be.”

but actually. . .

If an index could be a parameter, it might as well be.

Theorem
We can prove the induction principle of listP from the
induction principle of listI.

Proof.
The induction principle of listP says “for any A, any property
of elements of listP(A) can be proven by induction.” But this
statement is general over all A, hence follows from the
induction principle of listI.
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Trickier induction with indices

Theorem
For any v : vec(A,0) we have v = vnil.

Proof.
By induction??

Again, this is like proving “3 is prime” by induction on 3.
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Trickier induction with indices

Theorem
For any v : vec(A,0) we have v = vnil.

Proof.
Define P :

∏
n : N(vec(A,n)→ Prop) by induction on n:

P(0, v) := (v = vnil)
P(sn, v) := >

Now prove by induction on v : vec(A,n) that P(n, v) holds.
1 If v is vnil, then P(0, v) is (vnil = vnil), which is true.
2 If v is vcons(a, v ′), then P(0, v) is >, which is true.

Finally, let n = 0.
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Non-uniform parameters

As usual, this is an oversimplification. Coq also allows
“non-uniform parameters”, which are basically indices that are
written like parameters, but treated slightly differently internally.
Not really important for us.
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Outline

1 Non-recursive inductive types

2 Recursion and Induction

3 Inductive families

4 Identity types
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Equality types

Definition
The equality type (or identity type or path type) of any type A is
the following inductive family:

Inductive eq {A : Type} : A -> A -> Type :=
| refl : forall (a:A), eq a a.

Notations: eqA(a,b) (a = b) IdA(a,b) PathsA(a,b)

• There is only one way to prove that two things are equal;
namely, everything is equal to itself.

• A is a parameter; a and b are indices.
• We can make a into a parameter (Paulin-Möhring equality),

but not also b.
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Induction on equality
The eliminator for equality is:

Γ, x : A, y : A,p : (x = y) ` C : Type
Γ ` a : A Γ ` b : A Γ ` p : (a = b)

Γ, x : A ` c : C[y/x , reflx/p]

Γ ` J(xA.c; p) : C

In words:

If C(x , y ,p) is a property of pairs of equal elements of A, and
C(x , x , reflp) holds, then C(a,b,p) holds whenever p : (a = b).

In particular, if C depends only on y , then we have the principle
of substitution of equals for equals:

If a = b and C(a) holds, then so does C(b).
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Properties of equality

Theorem
Equality is transitive.

Proof.
Suppose p : (a = b) and q : (b = c). Then using q, we can
substitute c for b in p : (a = b) to obtain J(b.p,q) : (a = c).

Theorem
Equality is symmetric.

Proof.
Suppose p : (a = b). Then using p, we substitute b for the first
copy of a in refla : (a = a) to obtain J(a.refla,p) : (b = a).
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A trickier application

Theorem
0 6= 1.

Proof.
Suppose p : (0 = 1). Define C : N→ Type by “recursion”:

C(0) := unit
C(sn) := ∅

Now we have tt : C(0). Using p, we can substitute 1 for 0 in this
to obtain a term in C(1) = ∅.

NB: This proof is not by “induction on p”. We cannot do
induction on p, since its type is not fully general. Instead we
apply to p the already proved theorem of substitution.
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A non-application

Theorem
For any p : (a = a) we have p = refla.

Proof.
By induction, it suffices to assume that p is refla. But then we
have reflrefla : (p = refla).

This is not valid.
The type of p is not fully general.
We are trying to prove “3 is prime” by induction on 3.
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Intensional equality types

There are ways to formulate the rules of inductive type families
so that p = refla becomes provable. One such way is
implemented (by default) in the proof assistant Agda.

Or, we could just add it as an axiom.

But I find it much more natural just to take seriously the rule we
teach our incoming freshmen: when you prove something by
induction, the statement must be fully general.

Of course, I’m biased, because this is what makes the
homotopy interpretation possible. We’ll see that for most types
arising in real-world programming, the rule p = refla does hold
automatically, so this merely expands the scope of the theory.
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Resources

If you’re serious about following along in Coq, then at this point
I recommend starting to read some standard tutorials.
Unfortunately (for a mathematician), these are all written by
people working in verified computer programming.
• Benjamin Pierce et. al., Software foundations

(http://www.cis.upenn.edu/~bcpierce/sf/)
• Adam Chlipala, Certified programming with dependent

types (http://adam.chlipala.net/cpdt/)
• Yves Bertot and Pierre Castéran, The Coq’Art
• The Coq web site: http://coq.inria.fr/
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