Logic, homotopy levels, and equivalences

Michael Shulman

February 21, 2012

Intensional type theory

From now on, we work in a type theory with
© Dependent products
® Inductive type families (including identity types)
©® At least one “universe” Type

Basically: the fragment of Coq’s type theory that ignores
coinductive types and the sort Prop.

1/45

3/45

Function extensionality

We also assume:
Axiom (Function extensionality)

f,g: T aBO) - (I alf(x) = 9(x))) — (f = 9)

e Not provable in plain type theory.

e True in set theory: “If two functions are pointwise equal,
then they are equal as functions.”

e True in homotopy theory: “If two functions are homotopic,
they are connected by a path in the space of functions.”

5/45

The eta rule

Define n(f) := (Ax.f(x)). Then for any a,

n(f)(a) = (Ax.f(x))(a) —5 f(a).

Hence, function extensionality implies

f=n(f)

This is a proof of a proposition, i.e. a term in the type (f = n(f)).
It would be stronger to assert a computation rule f —, n(f) or
n(f) —, f; the upcoming Coq v8.4 will do the latter.

6/45

Paths

We think of terms p: (x = y) as paths x ~ y.
o Reflexivity becomes the constant path refly: x ~~ x.
e Transitivity becomes the concatenation p@q: x ~» z of
paths x 2 y NAPS
e Symmetry becomes reversal of a path !p: y ~ x.
But now there is more to say.
o Concatenation is associative: (p@q)@r = p@(q®@r).
 Better: there is a path ap q,: (p@Qq)@r ~» pO(qQ@r).

2-paths
The “associator” ap q,r is coherent:
(P@Qq)Q(r@s)
7
((p@g)@r)@s \\
é pe(qQ(res))
(p@(q@r))@s f
M
pe((qer)es)

...or more precisely, there is a path between those two
concatenations. ..
...which then has to be coherent...

7/45

8/45

oo-groupoids

Definition (Grothendieck,Batanin,...)

An oco-groupoid is a collection of points, together with paths
between points, 2-paths between paths, and so on, with all
possible coherent and consistent concatenation operations.

Theorem (Lusmdaine,Garner—van den Berg)

The tower of identity types of any type A in intensional type
theory forms an co-groupoid.

e Basically this means that any reasonable fact about paths
and higher paths is true.

e This is a theorem in type theory. (But not completely
formalized internally, due to issues with infinity.)

e Separately (later), co-groupoids defined in set theory are a
model of type theory.

9/45

Some homotopy types

» The circle S’ has one point b: S, and one path (b = b) for
every integer.

e The sphere S? has one point b: S?, the constant path
refl,: (b = b), and one 2-path (refl, = refly) for every
integer.

e In the type Type, a path p: (A = B) is an equivalence
(or bijection). E.g. there are many terms in (N = Z).

BUT: We cannot prove any of this in our current type theory.
Later, we’ll extend the theory; for now, these are intended
examples.

11/45

Some non-homotopy types

“Definition”
An h-set (or just a set) is a type that contains no nontrivial
k-paths for any kK > 1.

Examples

N, Z, and Q
unit and 0

A+B AxB,A—B,) , 2B and]],. 4B,aslongas A
and B are h-sets.

list(A), if Ais an h-set.
All datatypes arising in everyday programming.
Any type equivalent to an h-set is an h-set.

12/45

Paths for type constructors

A pathin A x Bis a path in A and a path in B.
A pathin A+ Bis a path in A ora path in B.
Any two paths in unit are the same.

A pathin [],. 4, B is a “pointwise path” (using function
extensionality).

Apathin)_ . ,Bis...what?

13/45

Transporting along paths

Given B: A — Type, x,y: A, and p: (x = y), we have the
operation of transporting along p:

transport(p, —): B(x) — B(y).

A path (x,u) = (y,v) in)_,. 4 B(x) consists of
e Apathp: (x =y)in A, and
e A path q: (transport(p, u) = v) in B(y).

Note: If B is independent of x, then transport(p, u) = u.

Paths in cartesian products

(y,transport(p, u))
._______,/”’

14/45

15/45

Paths in dependent sums

16/45

Internalizing logic

Classically, mathematics consists of two distinct activities:
© Defining things, and
® Proving statements about them.

In homotopy type theory, the basic activity is constructing terms
belonging to types.

© Defining a type = constructing a term in Type

® Defining a function = constructing atermin A — B

e ...

@ Stating a theorem = constructing a type that is an h-prop
® Proving a theorem = constructing a term in an h-prop

19/45

Definition

An h-proposition (or h-prop) is an h-set that is a subsingleton

(any two points are equal).

H-props

e In classical logic, an h-prop is “either empty or

contractible”.

e These are the “truth values” for embedding logic in

homotopy type theory.

Recall: propositions are built from “proposition constructors”:

Constructing h-props

Types <+— Propositions
AxB <+— PandQ
A+B <«— PorQ
A— B <+— Pimplies Q
unit +— T (true)
0 <+— L (false)
[T. aB(x) «— (vx: AP(x)
Sy aBX) +— (3x: A)P(x)

BUT: not all of these type constructors preserve h-props.

20/45

21/45

Constructing h-props

The following are h-props:
e unit and ((true and false)
e Ax B, if Aand B are h-props (and)
e A— B, if Aand B are h-props (implies)
e [[,. 4B(x), if each B(x) is an h-prop (for all)

These are not:
e A+ B, even if Aand B are h-props (or)
e > .. 4B(x), even if each B(x) is an h-prop (there exists)
e (x=y)forx,y: A, unless Ais an h-set.

Supports

In set theory, subsingletons are a reflective subcategory of sets,
and even of co-groupoids.

Definition

The support of A, denoted supp(A), is a subsingleton that
contains a point precisely when A does.

Eventually, we’ll need a type constructor that does this. But let’s
see how far we can get without it. (This will also tell us how to
formulate that type constructor.)

22/45

23/45

Internalizing h-props

Let’s try to internalize “A is an h-prop”:
@ forall x,y: A, there exists a path x ~ y

[T IT sueptx=
xX:Ay: A
® for all x,y: Aand paths p,q: x ~ y, there exists a 2-path
p~q.
ITII II 1] suee(e=a)

x:Ay:A p:(x=y) q: (x=y)

® forall x,y: A, paths p,g: x ~ y, and 2-paths r, s: p ~ q,
there exists a 3-path r ~ s.

o ..

Internalizing h-props

IT 1] supp(x =

xX:Ay: A

is the h-prop “for all x, y: A there exists a path from x to y”

II 11 x=

XA y: A

is the type of functions which assign to any pair x, y: A a path
from x to y, “varying continuously” with x and y.

Such a function implies the former h-prop, but also more. ..

24/45

25/45

Internalizing h-props

Suppose h: |[[] (x=y).

X:Ay: A
What does it mean that h(x, y) “varies continuously” with x, y?
@ It takes paths to paths: for p: (x; = xo) and q: (y1 = y»):

h(x1, y1)

1 ™~ J/ﬁ

N\
P Q\K\"Q q
&
X2
h(x2, y2)

® It takes 2-paths to 2-paths. ..
These are all things we expect to exist anyway in an h-prop!

Internalizing h-props
Infact, [[J] (x=y)is also sufficient to make A an h-prop!
X:Ay: A
Example
Suppose p, q: (x = y).

h(x, x) h(x, x)
X e~ X X e~ X
QD N
Qi+ Q-
refly N p refly @ q
Q Q
<§b <§b
X e J/ X J/

h(x,x) @ p = h(x, y) = h(x,x) @ g
pP=q

26/45

27/45

Internalizing h-props

Thus, it would be enough to define

isProp(A) = supp (H I] x= y)) .

X:A y: A

But amazingly, [[,. 4 [I,. o (x =) is already an h-prop,
even though (x = y) is not!

Definition

isProp(A) =[] [(x=v)

X:A y: A

Theorem
For any A, we can construct a term in

isProp(isProp(A)).

Homotopy levels

“Definition”

A type is n-truncated if it has no nontrivial k-paths for any kK > n.

Sets are the 0-truncated types.
S'is 1-truncated.

The type of sets (that is, the type whose points are sets) is
1-truncated.

The type of n-truncated types is (n + 1)-truncated.

S2?, and the type Type of all types, are not n-truncated for
any n.

28/45

30/45

Negative thinking

Observations
e A k-pathin Aisa (k —1)-path in (x = y) for some x, y: A.
e Thus Ais n-truncated < (x = y) is (n— 1)-truncated for
all x,y: A.
We’ve seen that if Ais O-truncated, then (x = y) is an h-prop.
Thus it makes sense to define

Definition
A type is (—1)-truncated if it is an h-prop.

31/45

Internalizing truncation

By induction, starting with n = (—1):
Definition
Atype Ais
e (—1)-truncated if it is an h-prop, and
e (n-+ 1)-truncated if (x = y) is n-truncated for all x, y: A.

Fixpoint isTrunc (n:nat) (A:Type) : Type :=
match n with
| —1 => 1isProp A
| S n’” => forall (x y:A), 1isTrunc n’ (x == vy)

end.

32/45

More negative thinking

What can we say about (x = y) if Ais an h-prop?
e it is an h-prop.
e itis inhabited.
Definition
A type is contractible, or (—2)-truncated, if it is an inhabited
h-prop.

(After this point, it's “turtles all the way down”: (—3)-truncated is
the same as (—2)-truncated.)

33/45

Alternative contractibility

Suppose A is contractible; thus we have a: A and

h:isProp(A) = [] (x=y).

X:Ay: A
Then
(a,h@): > [x=»)
X:Ay: A
Conversely, if
(ak): > I (x=v)
X:Ay: A

then a: A and

AxAyA (1k(x) @ k(y)) : isProp(A).

34/45

Alternative contractibility

It turns out that
isContr(A) =>] (x=y)
X:Ay: A
is also always an h-prop. So we can start the induction at —2:

Definition
Atype Ais
e (—2)-truncated if it is contractible, and
e (n+ 1)-truncated if (x = y) is n-truncated for all x, y: A.

This is what we usually do in practice.

Definition
A type has h-level nifitis (n — 2)-truncated.

Homotopy equivalences

Definition
A function f: A — Bis a homotopy equivalence if there exists
g: B— Aand homotopies go f ~idgand fo g ~ idg.

g: B—A

isEquiv(f) := supp (> ((go f=ida) x (fog= idB)))

This would not be an h-prop without supp. Can we avoid it?

35/45

37/45

Back to bijections

A function f: A — B between sets is a bijection if
© Thereexists g: B— Asuchthatgof=idsand fog = idg.
® OR: For each b ¢ B, the set f~1(b) is a singleton.

® OR: There exists g: B— Asuch that go f =id4 and also
h: B— Asuchthat fo h=idg.

38/45

Better equivalences

Definition
The homotopy fiber of f: A— Bat b: Bis

hfiber(f, b) =Y "(f(x) = b).

X: A

Definition (Voevodsky)
f is an equivalence if each hfiber(f, b) is contractible:

isEquiv(f) :== | | isContr(hfiber(f, b))
b: B

This is an h-prop.

39/45

H-isomorphisms

Definition (Joyal)

f: A— Bis an h-isomorphism if we have g: B— Aand a
homotopy g o f ~ id4, and also h: B — A and a homotopy
foh~idg.

isHIso(f) := (> (gOf—idA)) X (> (foh—ids)>

g: B—A h: B—A

This is also an h-prop.

40/45

Adjoint equivalences

Given a homotopy equivalence, we can also ask for more
coherence from r: (go f=idg) and s: (fo g = idg).

(1a) Forall b: B, we have u(b): (r(g(b)) = map(g, s(b))).
(1b) For all a: A, we have v(a): (map(f,r(a)) = s(f(a))).
(2a) Forall b: B, we have ... v(g(b) ...map(g, u(b)) ...
(2b) For all a: A, we have ...u(f(a) ...map(f,v(a)) ...

This gives an h-prop if we stop between any (na) and (nb).

Definition
f is an adjoint equivalence if we have g, r, s, and u.

isAdiEquiv(f) == 3 Z Z ((g(b)) = map(g, s(b)))

g: B—>A T

41/45

All equivalences are the same

Theorem
The following are equivalent:

© { is a homotopy equivalence.
® f is a (Voevodsky) equivalence.
® 1 is a (Joyal) h-isomorphism.
@ f is an adjoint equivalence.

The last three are supp-free h-props, so we have equivalences
isEquiv(f) ~ isHIso(f) ~ isAdjEquiv(f)

Definition
The type of equivalences between A, B: Type is

Equiv(A,B) ==) isEquiv(f).
f: A—B

42/45

The univalence axiom

For A, B: Type, we have
pathToEquiv, g: (A = B) — Equiv(A, B)

defined by induction on paths.
Note: (A = B) is a path-type of “Type”.

Axiom (Univalence)
For all A, B, the function pathToEquiv, g is an equivalence.

I]]I isEauiv(pathToEquiv, g)
A: Type B: Type

In particular, every equivalence yields a path between types.

44745

Remarks about univalence

© Univalence implies function extensionality (Voevodsky).

® Would like to formulate univalence (and, hence, function
extensionality) “computationally”. Some progress is being
made (Harper-Licata).

©® In set-theoretic models, univalence should correspond to
“object classifiers” in “(oco, 1)-toposes” (Rezk, Lurie)

@ So far, only a few actual models known (coherence issues).
® Many other uses.

45/45

