
Logic, homotopy levels, and equivalences

Michael Shulman

February 21, 2012

1 / 45

Intensional type theory

From now on, we work in a type theory with
1 Dependent products
2 Inductive type families (including identity types)
3 At least one “universe” Type

Basically: the fragment of Coq’s type theory that ignores
coinductive types and the sort Prop.

3 / 45

Function extensionality

We also assume:

Axiom (Function extensionality)

f ,g :
∏

x : A B(x) `
(∏

x : A(f (x) = g(x))
)
−→ (f = g)

• Not provable in plain type theory.
• True in set theory: “If two functions are pointwise equal,

then they are equal as functions.”
• True in homotopy theory: “If two functions are homotopic,

they are connected by a path in the space of functions.”

5 / 45

The eta rule

Define η(f) := (λx .f (x)). Then for any a,

η(f)(a) = (λx .f (x))(a)→β f (a).

Hence, function extensionality implies

f = η(f)

This is a proof of a proposition, i.e. a term in the type (f = η(f)).
It would be stronger to assert a computation rule f →η η(f) or
η(f)→η f ; the upcoming Coq v8.4 will do the latter.

6 / 45

Paths

We think of terms p : (x = y) as paths x y .
• Reflexivity becomes the constant path reflx : x x .
• Transitivity becomes the concatenation p@q : x z of

paths x
p
 y

q
 z.

• Symmetry becomes reversal of a path !p : y x .
But now there is more to say.
• Concatenation is associative: (p@q)@r = p@(q@r).
• Better: there is a path αp,q,r : (p@q)@r p@(q@r).

7 / 45

2-paths

The “associator” αp,q,r is coherent:

p@(q@(r@s))

(p@q)@(r@s)

((p@q)@r)@s

(p@(q@r))@s

p@((q@r)@s)

. . . or more precisely, there is a path between those two
concatenations. . .
. . . which then has to be coherent. . .

8 / 45

∞-groupoids

Definition (Grothendieck,Batanin,. . .)
An∞-groupoid is a collection of points, together with paths
between points, 2-paths between paths, and so on, with all
possible coherent and consistent concatenation operations.

Theorem (Lusmdaine,Garner–van den Berg)
The tower of identity types of any type A in intensional type
theory forms an∞-groupoid.

• Basically this means that any reasonable fact about paths
and higher paths is true.

• This is a theorem in type theory. (But not completely
formalized internally, due to issues with infinity.)

• Separately (later),∞-groupoids defined in set theory are a
model of type theory.

9 / 45

Some homotopy types

• The circle S1 has one point b : S1, and one path (b = b) for
every integer.

• The sphere S2 has one point b : S2, the constant path
reflb : (b = b), and one 2-path (reflb = reflb) for every
integer.

• In the type Type, a path p : (A = B) is an equivalence
(or bijection). E.g. there are many terms in (N = Z).

BUT: We cannot prove any of this in our current type theory.
Later, we’ll extend the theory; for now, these are intended
examples.

11 / 45

Some non-homotopy types

“Definition”
An h-set (or just a set) is a type that contains no nontrivial
k -paths for any k ≥ 1.

Examples

• N, Z, and Q
• unit and ∅
• A + B, A× B, A→ B,

∑
x : A B, and

∏
x : A B, as long as A

and B are h-sets.
• list(A), if A is an h-set.
• All datatypes arising in everyday programming.
• Any type equivalent to an h-set is an h-set.

12 / 45

Paths for type constructors

• A path in A× B is a path in A and a path in B.
• A path in A + B is a path in A or a path in B.
• Any two paths in unit are the same.
• A path in

∏
x : A B is a “pointwise path” (using function

extensionality).
• A path in

∑
x : A B is. . . what?

13 / 45

Transporting along paths

Given B : A→ Type, x , y : A, and p : (x = y), we have the
operation of transporting along p:

transport(p,−) : B(x)→ B(y).

A path (x ,u) = (y , v) in
∑

x : A B(x) consists of
• A path p : (x = y) in A, and
• A path q : (transport(p,u) = v) in B(y).

Note: If B is independent of x , then transport(p,u) = u.

14 / 45

Paths in cartesian products

x y

p

u

v
q

(x ,u)

(y , v)

A

B A× B

q
(y , transport(p,u))

15 / 45

Paths in dependent sums

x y

p
A

B(x) B(y) ∑
x : A B(x)

u

v

q
transport(p,u)

16 / 45

Internalizing logic

Classically, mathematics consists of two distinct activities:
1 Defining things, and
2 Proving statements about them.

In homotopy type theory, the basic activity is constructing terms
belonging to types.

1 Defining a type = constructing a term in Type
2 Defining a function = constructing a term in A→ B
3 . . .
4 Stating a theorem = constructing a type that is an h-prop
5 Proving a theorem = constructing a term in an h-prop

19 / 45

H-props

Definition
An h-proposition (or h-prop) is an h-set that is a subsingleton
(any two points are equal).

• In classical logic, an h-prop is “either empty or
contractible”.

• These are the “truth values” for embedding logic in
homotopy type theory.

20 / 45

Constructing h-props

Recall: propositions are built from “proposition constructors”:

Types ←→ Propositions

A× B ←→ P and Q
A + B ←→ P or Q

A→ B ←→ P implies Q
unit ←→ > (true)
∅ ←→ ⊥ (false)∏

x : A B(x) ←→ (∀x : A)P(x)∑
x : A B(x) ←→ (∃x : A)P(x)

BUT: not all of these type constructors preserve h-props.

21 / 45

Constructing h-props

The following are h-props:
• unit and ∅ (true and false)
• A× B, if A and B are h-props (and)
• A→ B, if A and B are h-props (implies)
•
∏

x : A B(x), if each B(x) is an h-prop (for all)

These are not:
• A + B, even if A and B are h-props (or)
•
∑

x : A B(x), even if each B(x) is an h-prop (there exists)
• (x = y) for x , y : A, unless A is an h-set.

22 / 45

Supports

In set theory, subsingletons are a reflective subcategory of sets,
and even of∞-groupoids.

Definition
The support of A, denoted supp(A), is a subsingleton that
contains a point precisely when A does.

Eventually, we’ll need a type constructor that does this. But let’s
see how far we can get without it. (This will also tell us how to
formulate that type constructor.)

23 / 45

Internalizing h-props

Let’s try to internalize “A is an h-prop”:
1 for all x , y : A, there exists a path x y∏

x : A

∏
y : A

supp(x = y)

2 for all x , y : A and paths p,q : x y , there exists a 2-path
p q. ∏

x : A

∏
y : A

∏
p : (x=y)

∏
q : (x=y)

supp(p = q)

3 for all x , y : A, paths p,q : x y , and 2-paths r , s : p q,
there exists a 3-path r s.

4 . . .

24 / 45

Internalizing h-props

∏
x : A

∏
y : A

supp(x = y)

is the h-prop “for all x , y : A there exists a path from x to y ”∏
x : A

∏
y : A

(x = y)

is the type of functions which assign to any pair x , y : A a path
from x to y , “varying continuously” with x and y .

Such a function implies the former h-prop, but also more. . .

25 / 45

Internalizing h-props

Suppose h :
∏
x : A

∏
y : A

(x = y).

What does it mean that h(x , y) “varies continuously” with x , y?
1 It takes paths to paths: for p : (x1 = x2) and q : (y1 = y2):

x1

x2

y1

y2

p

h(x1, y1)

q

h(x2, y2)

map
(h
, p
, q
)

2 It takes 2-paths to 2-paths. . .
These are all things we expect to exist anyway in an h-prop!

26 / 45

Internalizing h-props
In fact,

∏
x : A

∏
y : A

(x = y) is also sufficient to make A an h-prop!

Example
Suppose p,q : (x = y).

x

x

x

y

reflx

h(x , x)

p

h(x , y)

map
(h
, re

fl x,
p)

x

x

x

y

reflx

h(x , x)

q

h(x , y)

map
(h
, re

fl x,
q)

h(x , x) @ p = h(x , y) = h(x , x) @ q
p = q

27 / 45

Internalizing h-props
Thus, it would be enough to define

isProp(A) := supp

∏
x : A

∏
y : A

(x = y)

 .

But amazingly,
∏

x : A
∏

y : A (x = y) is already an h-prop,
even though (x = y) is not!

Definition
isProp(A) :=

∏
x : A

∏
y : A

(x = y)

Theorem
For any A, we can construct a term in

isProp(isProp(A)).

28 / 45

Homotopy levels

“Definition”
A type is n-truncated if it has no nontrivial k -paths for any k > n.

• Sets are the 0-truncated types.
• S1 is 1-truncated.
• The type of sets (that is, the type whose points are sets) is

1-truncated.
• The type of n-truncated types is (n + 1)-truncated.
• S2, and the type Type of all types, are not n-truncated for

any n.

30 / 45

Negative thinking

Observations

• A k -path in A is a (k − 1)-path in (x = y) for some x , y : A.
• Thus A is n-truncated ⇐⇒ (x = y) is (n− 1)-truncated for

all x , y : A.

We’ve seen that if A is 0-truncated, then (x = y) is an h-prop.
Thus it makes sense to define

Definition
A type is (−1)-truncated if it is an h-prop.

31 / 45

Internalizing truncation

By induction, starting with n = (−1):

Definition
A type A is
• (−1)-truncated if it is an h-prop, and
• (n + 1)-truncated if (x = y) is n-truncated for all x , y : A.

Fixpoint isTrunc (n:nat) (A:Type) : Type :=
match n with
| -1 => isProp A
| S n’ => forall (x y:A), isTrunc n’ (x == y)

end.

32 / 45

More negative thinking

What can we say about (x = y) if A is an h-prop?
• it is an h-prop.
• it is inhabited.

Definition
A type is contractible, or (−2)-truncated, if it is an inhabited
h-prop.

(After this point, it’s “turtles all the way down”: (−3)-truncated is
the same as (−2)-truncated.)

33 / 45

Alternative contractibility
Suppose A is contractible; thus we have a : A and

h : isProp(A) :=
∏
x : A

∏
y : A

(x = y).

Then
(a,h(a)) :

∑
x : A

∏
y : A

(x = y).

Conversely, if
(a, k) :

∑
x : A

∏
y : A

(x = y)

then a : A and

λxAyA.
(
!k(x) @ k(y)

)
: isProp(A).

34 / 45

Alternative contractibility
It turns out that

isContr(A) :=
∑
x : A

∏
y : A

(x = y)

is also always an h-prop. So we can start the induction at −2:

Definition
A type A is
• (−2)-truncated if it is contractible, and
• (n + 1)-truncated if (x = y) is n-truncated for all x , y : A.

This is what we usually do in practice.

Definition
A type has h-level n if it is (n − 2)-truncated.

35 / 45

Homotopy equivalences

Definition
A function f : A→ B is a homotopy equivalence if there exists
g : B → A and homotopies g ◦ f ∼ idA and f ◦ g ∼ idB.

isEquiv(f) := supp

 ∑
g : B→A

(
(g ◦ f = idA)× (f ◦ g = idB)

)
This would not be an h-prop without supp. Can we avoid it?

37 / 45

Back to bijections

A function f : A→ B between sets is a bijection if
1 There exists g : B → A such that g ◦ f = idA and f ◦ g = idB.
2 OR: For each b ∈ B, the set f−1(b) is a singleton.
3 OR: There exists g : B → A such that g ◦ f = idA and also

h : B → A such that f ◦ h = idB.

38 / 45

Better equivalences

Definition
The homotopy fiber of f : A→ B at b : B is

hfiber(f ,b) :=
∑
x : A

(f (x) = b).

Definition (Voevodsky)
f is an equivalence if each hfiber(f ,b) is contractible:

isEquiv(f) :=
∏
b : B

isContr(hfiber(f ,b))

This is an h-prop.

39 / 45

H-isomorphisms

Definition (Joyal)
f : A→ B is an h-isomorphism if we have g : B → A and a
homotopy g ◦ f ∼ idA, and also h : B → A and a homotopy
f ◦ h ∼ idB.

isHIso(f) :=

 ∑
g : B→A

(g ◦ f = idA)

×(∑
h : B→A

(f ◦ h = idB)

)

This is also an h-prop.

40 / 45

Adjoint equivalences
Given a homotopy equivalence, we can also ask for more
coherence from r : (g ◦ f = idA) and s : (f ◦ g = idB).
(1a) For all b : B, we have u(b) : (r(g(b)) = map(g, s(b))).
(1b) For all a : A, we have v(a) : (map(f , r(a)) = s(f (a))).
(2a) For all b : B, we have . . . v(g(b) . . . map(g,u(b)) . . .
(2b) For all a : A, we have . . . u(f (a) . . . map(f , v(a)) . . .
...
This gives an h-prop if we stop between any (n a) and (n b).

Definition
f is an adjoint equivalence if we have g, r , s, and u.

isAdjEquiv(f) :=
∑

g : B→A

∑
r : ...

∑
s : ...

(
r(g(b)) = map(g, s(b))

)

41 / 45

All equivalences are the same
Theorem
The following are equivalent:

1 f is a homotopy equivalence.
2 f is a (Voevodsky) equivalence.
3 f is a (Joyal) h-isomorphism.
4 f is an adjoint equivalence.

The last three are supp-free h-props, so we have equivalences

isEquiv(f) ' isHIso(f) ' isAdjEquiv(f)

Definition
The type of equivalences between A,B : Type is

Equiv(A,B) :=
∑

f : A→B

isEquiv(f).

42 / 45

The univalence axiom

For A,B : Type, we have

pathToEquivA,B : (A = B)→ Equiv(A,B)

defined by induction on paths.
Note: (A = B) is a path-type of “Type”.

Axiom (Univalence)
For all A,B, the function pathToEquivA,B is an equivalence.∏

A : Type

∏
B : Type

isEquiv(pathToEquivA,B)

In particular, every equivalence yields a path between types.

44 / 45

Remarks about univalence

1 Univalence implies function extensionality (Voevodsky).
2 Would like to formulate univalence (and, hence, function

extensionality) “computationally”. Some progress is being
made (Harper-Licata).

3 In set-theoretic models, univalence should correspond to
“object classifiers” in “(∞,1)-toposes” (Rezk, Lurie)

4 So far, only a few actual models known (coherence issues).
5 Many other uses.

45 / 45

