Logic, homotopy levels, and equivalences

Michael Shulman

February 21, 2012

From now on, we work in a type theory with
(1) Dependent products
(2) Inductive type families (including identity types)
(3) At least one "universe" Type

Basically: the fragment of Coq's type theory that ignores coinductive types and the sort Prop.

Function extensionality

We also assume:
Axiom (Function extensionality)

$$
f, g: \prod_{x: A} B(x) \vdash\left(\prod_{x: A}(f(x)=g(x))\right) \longrightarrow(f=g)
$$

- Not provable in plain type theory.
- True in set theory: "If two functions are pointwise equal, then they are equal as functions."
- True in homotopy theory: "If two functions are homotopic, they are connected by a path in the space of functions."

Define $\eta(f):=(\lambda x . f(x))$. Then for any a,

$$
\eta(f)(a)=(\lambda x . f(x))(a) \rightarrow_{\beta} f(a) .
$$

Hence, function extensionality implies

$$
f=\eta(f)
$$

This is a proof of a proposition, i.e. a term in the type $(f=\eta(f))$. It would be stronger to assert a computation rule $f \rightarrow_{\eta} \eta(f)$ or $\eta(f) \rightarrow_{\eta} f$; the upcoming Coq v8.4 will do the latter.

We think of terms $p:(x=y)$ as paths $x \rightsquigarrow y$.

- Reflexivity becomes the constant path refl ${ }_{x}: x \rightsquigarrow x$.
- Transitivity becomes the concatenation $p @ q: x \rightsquigarrow z$ of paths $x \stackrel{p}{\rightsquigarrow} y \stackrel{q}{\sim} z$.
- Symmetry becomes reversal of a path ! $p: y \rightsquigarrow x$.

But now there is more to say.

- Concatenation is associative: $(p @ q) @ r=p @(q @ r)$.
- Better: there is a path $\alpha_{p, q, r}:(p @ q) @ r \rightsquigarrow p @(q @ r)$.

∞-groupoids

Definition (Grothendieck,Batanin,...)
An ∞-groupoid is a collection of points, together with paths between points, 2-paths between paths, and so on, with all possible coherent and consistent concatenation operations.

Theorem (Lusmdaine,Garner-van den Berg)
The tower of identity types of any type A in intensional type theory forms an ∞-groupoid.

- Basically this means that any reasonable fact about paths and higher paths is true.
- This is a theorem in type theory. (But not completely formalized internally, due to issues with infinity.)
- Separately (later), ∞-groupoids defined in set theory are a model of type theory.

The "associator" $\alpha_{p, q, r}$ is coherent:

... or more precisely, there is a path between those two concatenations...
... which then has to be coherent. . .

Some homotopy types

- The circle S^{1} has one point $b: S^{1}$, and one path $(b=b)$ for every integer.
- The sphere S^{2} has one point $b: S^{2}$, the constant path refl $_{b}:(b=b)$, and one 2-path $\left(\right.$ refl $_{b}=$ refl $\left._{b}\right)$ for every integer.
- In the type Type, a path $p:(A=B)$ is an equivalence (or bijection). E.g. there are many terms in $(\mathbb{N}=\mathbb{Z})$.
BUT: We cannot prove any of this in our current type theory. Later, we'll extend the theory; for now, these are intended examples.
"Definition"
An h-set (or just a set) is a type that contains no nontrivial k-paths for any $k \geq 1$.
Examples
- \mathbb{N}, \mathbb{Z}, and \mathbb{Q}
- unit and \emptyset
- $A+B, A \times B, A \rightarrow B, \sum_{x: A} B$, and $\prod_{x: A} B$, as long as A and B are h-sets.
- $\operatorname{list}(A)$, if A is an h-set.
- All datatypes arising in everyday programming.
- Any type equivalent to an h -set is an h -set.
- A path in $A \times B$ is a path in A and a path in B.
- A path in $A+B$ is a path in A or a path in B.
- Any two paths in unit are the same.
- A path in $\prod_{x: A} B$ is a "pointwise path" (using function extensionality).
- A path in $\sum_{x: A} B$ is. . . what?

Transporting along paths

Given $B: A \rightarrow$ Type, $x, y: A$, and $p:(x=y)$, we have the operation of transporting along p :

$$
\operatorname{transport}(p,-): B(x) \rightarrow B(y)
$$

A path $(x, u)=(y, v)$ in $\sum_{x: A} B(x)$ consists of

- A path $p:(x=y)$ in A, and
- A path q : $(\operatorname{transport}(p, u)=v)$ in $B(y)$.

Note: If B is independent of x, then $\operatorname{transport}(p, u)=u$.

Paths in cartesian products

$\frac{p}{x y} A$

Classically, mathematics consists of two distinct activities:
(1) Defining things, and
(2) Proving statements about them.

In homotopy type theory, the basic activity is constructing terms belonging to types.
(1) Defining a type $=$ constructing a term in Type
(2) Defining a function $=$ constructing a term in $A \rightarrow B$
(3)..
4. Stating a theorem = constructing a type that is an h-prop
(5) Proving a theorem = constructing a term in an h-prop

Definition

An h-proposition (or h-prop) is an h-set that is a subsingleton (any two points are equal).

- In classical logic, an h-prop is "either empty or contractible".
- These are the "truth values" for embedding logic in homotopy type theory.

Constructing h-props

Recall: propositions are built from "proposition constructors":

Types	\longleftrightarrow Propositions
$A \times B$	$\longleftrightarrow P$ and Q
$A+B$	$\longleftrightarrow P$ or Q
$A \rightarrow B$	$\longleftrightarrow P$ implies Q
unit	\longleftrightarrow (true)
\emptyset	$\longleftrightarrow P$ (false)
$\prod_{x: A} B(x)$	$\longleftrightarrow(\forall x: A) P(x)$
$\sum_{x: A} B(x)$	\longleftrightarrow
	$(\exists x: A) P(x)$

BUT: not all of these type constructors preserve h-props.

The following are h-props:

- unit and \emptyset (true and false)
- $A \times B$, if A and B are h-props (and)
- $A \rightarrow B$, if A and B are h-props (implies)
- $\prod_{x: A} B(x)$, if each $B(x)$ is an h-prop (for all)

These are not:

- $A+B$, even if A and B are h-props (or)
- $\sum_{x: A} B(x)$, even if each $B(x)$ is an h-prop (there exists)
- $(x=y)$ for $x, y: A$, unless A is an h-set.

Internalizing h-props

Let's try to internalize " A is an h-prop":
(1) for all x, y : A, there exists a path $x \rightsquigarrow y$

$$
\prod_{x: A} \prod_{y: A} \operatorname{supp}(x=y)
$$

(2) for all x, y : A and paths $p, q: x \rightsquigarrow y$, there exists a 2-path $p \rightsquigarrow q$.

$$
\prod_{x: A} \prod_{y: A} \prod_{p:(x=y)} \prod_{q:(x=y)} \operatorname{supp}(p=q)
$$

(3) for all $x, y: A$, paths $p, q: x \rightsquigarrow y$, and 2-paths $r, s: p \rightsquigarrow q$, there exists a 3-path $r \rightsquigarrow s$.

(4)

In set theory, subsingletons are a reflective subcategory of sets, and even of ∞-groupoids.
Definition
The support of A, denoted $\operatorname{supp}(A)$, is a subsingleton that contains a point precisely when A does.

Eventually, we'll need a type constructor that does this. But let's see how far we can get without it. (This will also tell us how to formulate that type constructor.)

Internalizing h-props

$$
\prod_{x: A} \prod_{y: A} \operatorname{supp}(x=y)
$$

is the h-prop "for all $x, y: A$ there exists a path from x to y "

$$
\prod_{x: A} \prod_{y: A}(x=y)
$$

is the type of functions which assign to any pair $x, y: A$ a path from x to y, "varying continuously" with x and y.

Such a function implies the former h-prop, but also more...

$$
\text { Suppose } h: \prod_{x: A} \prod_{y: A}(x=y)
$$

What does it mean that $h(x, y)$ "varies continuously" with x, y ?
(1) It takes paths to paths: for $p:\left(x_{1}=x_{2}\right)$ and $q:\left(y_{1}=y_{2}\right)$:

(2) It takes 2-paths to 2-paths...

These are all things we expect to exist anyway in an h-prop!

Internalizing h-props

Thus, it would be enough to define

$$
\text { isProp }(A):=\operatorname{supp}\left(\prod_{x: A} \prod_{y: A}(x=y)\right)
$$

But amazingly, $\prod_{x: A} \prod_{y: A}(x=y)$ is already an h-prop, even though $(x=y)$ is not!
Definition

$$
\operatorname{isProp}(A):=\prod_{x: A} \prod_{y: A}(x=y)
$$

Theorem
For any A, we can construct a term in

$$
\text { isProp(isProp }(A)) \text {. }
$$

Internalizing h-props

In fact, $\prod_{x: A} \prod_{y: A}(x=y)$ is also sufficient to make A an h-prop!
Example
Suppose p, q : $(x=y)$.

"Definition"

A type is n-truncated if it has no nontrivial k-paths for any $k>n$.

- Sets are the 0-truncated types.
- S^{1} is 1 -truncated.
- The type of sets (that is, the type whose points are sets) is 1-truncated.
- The type of n-truncated types is $(n+1)$-truncated.
- S^{2}, and the type Type of all types, are not n-truncated for any n.

Observations

- A k-path in A is a $(k-1)$-path in $(x=y)$ for some x, y : A.
- Thus A is n-truncated $\Longleftrightarrow(x=y)$ is $(n-1)$-truncated for all x, y : A.

We've seen that if A is 0 -truncated, then $(x=y)$ is an h-prop.
Thus it makes sense to define
Definition
A type is (-1)-truncated if it is an h-prop.

More negative thinking

What can we say about $(x=y)$ if A is an h-prop?

- it is an h-prop.
- it is inhabited.

Definition
A type is contractible, or (-2)-truncated, if it is an inhabited h-prop.
(After this point, it's "turtles all the way down": (-3)-truncated is the same as (-2)-truncated.)

By induction, starting with $n=(-1)$:
Definition
A type A is

- (-1)-truncated if it is an h-prop, and
- $(n+1)$-truncated if $(x=y)$ is n-truncated for all $x, y: A$.

```
Fixpoint isTrunc (n:nat) (A:Type) : Type :=
    match n with
        | -1 => isProp A
        | S n' => forall (x y:A), isTrunc n' (x == y)
    end.
```


Alternative contractibility

Suppose A is contractible; thus we have a: A and

$$
h: \operatorname{isProp}(A):=\prod_{x: A} \prod_{y: A}(x=y)
$$

Then

$$
(a, h(a)): \sum_{x: A} \prod_{y: A}(x=y) .
$$

Conversely, if

$$
(a, k): \sum_{x: A} \prod_{y: A}(x=y)
$$

then a: A and

$$
\lambda x^{A} y^{A} \cdot(!k(x) @ k(y)): \text { isProp }(A) .
$$

Alternative contractibility

It turns out that

$$
\text { isContr }(A):=\sum_{x: A} \prod_{y: A}(x=y)
$$

is also always an h-prop. So we can start the induction at -2 :
Definition
A type A is

- (-2)-truncated if it is contractible, and
- $(n+1)$-truncated if $(x=y)$ is n-truncated for all $x, y: A$.

This is what we usually do in practice.
Definition
A type has h-level n if it is $(n-2)$-truncated.
Definition
A function $f: A \rightarrow B$ is a homotopy equivalence if there exists $g: B \rightarrow A$ and homotopies $g \circ f \sim \operatorname{id}_{A}$ and $f \circ g \sim \operatorname{id}_{B}$.

$$
\text { isEquiv }(f):=\operatorname{supp}\left(\sum_{g: B \rightarrow A}\left(\left(g \circ f=\mathrm{id}_{A}\right) \times\left(f \circ g=\mathrm{id}_{B}\right)\right)\right)
$$

This would not be an h-prop without supp. Can we avoid it?

Better equivalences

Definition
The homotopy fiber of $f: A \rightarrow B$ at $b: B$ is

$$
\operatorname{hfiber}(f, b):=\sum_{x: A}(f(x)=b) .
$$

Definition (Voevodsky)
f is an equivalence if each hfiber (f, b) is contractible:

$$
\text { isEquiv } \left.(f):=\prod_{b: B} \text { isContr(hfiber }(f, b)\right)
$$

This is an h-prop.

Definition (Joyal)

$f: A \rightarrow B$ is an h-isomorphism if we have $g: B \rightarrow A$ and a homotopy $g \circ f \sim \operatorname{id}_{A}$, and also $h: B \rightarrow A$ and a homotopy $f \circ h \sim \mathrm{id}_{B}$.

$$
\text { isHlso }(f):=\left(\sum_{g: B \rightarrow A}\left(g \circ f=\mathrm{id}_{A}\right)\right) \times\left(\sum_{h: B \rightarrow A}\left(f \circ h=\mathrm{id}_{B}\right)\right)
$$

This is also an h-prop.

All equivalences are the same

Theorem
The following are equivalent:
(1) f is a homotopy equivalence.
(2) f is a (Voevodsky) equivalence.
(3) f is a (Joyal) h-isomorphism.
(4) f is an adjoint equivalence.

The last three are supp-free h-props, so we have equivalences

$$
\text { isEquiv }(f) \simeq \operatorname{isHIso}(f) \simeq \operatorname{isAdjEquiv}(f)
$$

Definition

The type of equivalences between A, B : Type is

$$
\text { Equiv }(A, B):=\sum_{f: A \rightarrow B} \text { isEquiv }(f)
$$

Given a homotopy equivalence, we can also ask for more coherence from $r:\left(g \circ f=\mathrm{id}_{A}\right)$ and $s:\left(f \circ g=\mathrm{id}_{B}\right)$.
(1a) For all $b: B$, we have $u(b):(r(g(b))=\operatorname{map}(g, s(b)))$.
(1b) For all a : A, we have $v(a):(\operatorname{map}(f, r(a))=s(f(a)))$.
(2a) For all b : B, we have $\ldots v(g(b) \ldots \operatorname{map}(g, u(b)) \ldots$
(2b) For all a: A, we have $\ldots u(f(a) \ldots \operatorname{map}(f, v(a)) \ldots$
\vdots
This gives an h-prop if we stop between any ($n \mathrm{a}$) and ($n \mathrm{~b}$).

Definition

f is an adjoint equivalence if we have g, r, s, and u.

$$
\text { isAdjEquiv }(f):=\sum_{g: B \rightarrow A} \sum_{r: \ldots} \sum_{s: \ldots}(r(g(b))=\operatorname{map}(g, s(b)))
$$

The univalence axiom

For A, B : Type, we have

$$
\text { pathToEquiv }_{A, B}:(A=B) \rightarrow \operatorname{Equiv}(A, B)
$$

defined by induction on paths.
Note: $(A=B)$ is a path-type of "Type".
Axiom (Univalence)
For all A, B, the function pathToEquiv ${ }_{A, B}$ is an equivalence.

$$
\prod_{A: \text { Type }} \prod_{B: \text { Type }} \text { isEquiv }\left(\text { pathToEquiv }_{A, B}\right)
$$

In particular, every equivalence yields a path between types.

Remarks about univalence

(1) Univalence implies function extensionality (Voevodsky).
(2) Would like to formulate univalence (and, hence, function extensionality) "computationally". Some progress is being made (Harper-Licata).
(3) In set-theoretic models, univalence should correspond to "object classifiers" in "($\infty, 1$)-toposes" (Rezk, Lurie)
(4) So far, only a few actual models known (coherence issues).
(5) Many other uses.

