Logic, homotopy levels, and equivalences

Michael Shulman

February 21, 2012

From now on, we work in a type theory with

- 1 Dependent products
- 2 Inductive type families (including identity types)
- 3 At least one "universe" Type

Basically: the fragment of Coq's type theory that ignores coinductive types and the sort Prop.

1/45

Function extensionality

We also assume:

Axiom (Function extensionality)

$$f,g: \prod_{x:A} B(x) \vdash \left(\prod_{x:A} (f(x) = g(x))\right) \longrightarrow (f = g)$$

- Not provable in plain type theory.
- True in set theory: "If two functions are pointwise equal, then they are equal as functions."
- True in homotopy theory: "If two functions are homotopic, they are connected by a path in the space of functions."

The eta rule

Define $\eta(f) \coloneqq (\lambda x.f(x))$. Then for any *a*,

 $\eta(f)(a) = (\lambda x.f(x))(a) \to_{\beta} f(a).$

Hence, function extensionality implies

 $f = \eta(f)$

This is a proof of a proposition, i.e. a term in the type $(f = \eta(f))$. It would be stronger to assert a computation rule $f \rightarrow_{\eta} \eta(f)$ or $\eta(f) \rightarrow_{\eta} f$; the upcoming Coq v8.4 will do the latter.

Paths

We think of terms p: (x = y) as paths $x \rightsquigarrow y$.

- Reflexivity becomes the constant path refl_x: $x \rightsquigarrow x$.
- Transitivity becomes the concatenation p@q: x → z of paths x → y → z.
- Symmetry becomes reversal of a path $!p: y \rightsquigarrow x$.

But now there is more to say.

- Concatenation is associative: (p@q)@r = p@(q@r).
- Better: there is a path $\alpha_{p,q,r}$: $(p@q)@r \rightsquigarrow p@(q@r)$.

The "associator" $\alpha_{p,q,r}$ is coherent:

... or more precisely, there is a path between those two concatenations...

... which then has to be coherent...

7/45

7740

∞ -groupoids

Definition (Grothendieck, Batanin,...)

An ∞ -groupoid is a collection of points, together with paths between points, 2-paths between paths, and so on, with all possible coherent and consistent concatenation operations.

Theorem (Lusmdaine,Garner-van den Berg)

The tower of identity types of any type A in intensional type theory forms an ∞ -groupoid.

- Basically this means that any reasonable fact about paths and higher paths is true.
- This is a theorem *in type theory*. (But not completely formalized internally, due to issues with infinity.)
- Separately (later), ∞-groupoids defined *in set theory* are a model of type theory.

Some homotopy types

- The circle *S*¹ has one point *b*: *S*¹, and one path (*b* = *b*) for every integer.
- The sphere S² has one point b: S², the constant path refl_b: (b = b), and one 2-path (refl_b = refl_b) for every integer.
- In the type Type, a path p: (A = B) is an equivalence (or bijection). E.g. there are many terms in (N = Z).

BUT: We cannot prove any of this in our current type theory. Later, we'll extend the theory; for now, these are *intended* examples.

"Definition"

An h-set (or just a set) is a type that contains no nontrivial k-paths for any $k \ge 1$.

Examples

- $\mathbb{N}, \mathbb{Z},$ and \mathbb{Q}
- unit and \emptyset
- A + B, $A \times B$, $A \rightarrow B$, $\sum_{x : A} B$, and $\prod_{x : A} B$, as long as A and B are h-sets.
- list(A), if A is an h-set.
- All datatypes arising in everyday programming.
- Any type equivalent to an h-set is an h-set.

- A path in $A \times B$ is a path in A and a path in B.
- A path in A + B is a path in A or a path in B.
- Any two paths in unit are the same.
- A path in ∏_{x: A} B is a "pointwise path" (using function extensionality).
- A path in $\sum_{x \in A} B$ is... what?

12/45

Transporting along paths

Given $B: A \rightarrow$ Type, x, y: A, and p: (x = y), we have the operation of transporting along p:

transport(
$$p, -$$
): $B(x) \rightarrow B(y)$

A path (x, u) = (y, v) in $\sum_{x \in A} B(x)$ consists of

- A path p: (x = y) in A, and
- A path q: (transport(p, u) = v) in B(y).

Note: If *B* is independent of *x*, then transport(p, u) = u.

Paths in cartesian products

Paths in dependent sums

Internalizing logic

Classically, mathematics consists of two distinct activities:

- 1 Defining things, and
- 2 Proving statements about them.

In homotopy type theory, the basic activity is constructing terms belonging to types.

- 1 Defining a type = constructing a term in Type
- **2** Defining a function = constructing a term in $A \rightarrow B$

3 . . .

- 4 Stating a theorem = constructing a type that is an h-prop
- 5 Proving a theorem = constructing a term in an h-prop

16/45

H-props

Constructing h-props

Recall: propositions are built from "proposition constructors":

Types	\longleftrightarrow	Propositions
A imes B	\longleftrightarrow	P and Q
A + B	\longleftrightarrow	P or Q
A ightarrow B	\longleftrightarrow	P implies Q
unit	\longleftrightarrow	⊤ (true)
Ø	\longleftrightarrow	\perp (false)
$\prod_{x \in A} B(x)$	\longleftrightarrow	$(\forall x : A)P(x)$
$\sum_{x \in A} B(x)$	\longleftrightarrow	$(\exists x: A)P(x)$

BUT: not all of these type constructors preserve h-props.

Definition

An h-proposition (or h-prop) is an h-set that is a *subsingleton* (any two points are equal).

- In classical logic, an h-prop is "either empty or contractible".
- These are the "truth values" for embedding logic in homotopy type theory.

Constructing h-props

The following are h-props:

- unit and Ø (true and false)
- $A \times B$, if A and B are h-props (and)
- $A \rightarrow B$, if A and B are h-props (implies)
- $\prod_{x:A} B(x)$, if each B(x) is an h-prop (for all)

These are not:

- A + B, even if A and B are h-props (or)
- $\sum_{x:A} B(x)$, even if each B(x) is an h-prop (there exists)
- (x = y) for $x, y \in A$, unless A is an h-set.

In set theory, subsingletons are a reflective subcategory of sets, and even of $\infty\mathchar`-groupoids.$

Definition

The support of A, denoted supp(A), is a subsingleton that contains a point precisely when A does.

Eventually, we'll need a type constructor that does this. But let's see how far we can get without it. (This will also tell us how to formulate that type constructor.)

22/45

Internalizing h-props

$$\prod_{x:A} \prod_{y:A} \operatorname{supp}(x = y)$$

is the h-prop "for all x, y: A there exists a path from x to y"

 $\prod_{x:A}\prod_{y:A}(x=y)$

is the type of functions which assign to any pair x, y : A a path from x to y, "varying continuously" with x and y.

Such a function implies the former h-prop, but also more...

Internalizing h-props

Let's try to internalize "A is an h-prop":

1 for all x, y : A, there exists a path $x \rightsquigarrow y$

$$\prod_{x:A} \prod_{y:A} \operatorname{supp}(x = y)$$

2 for all x, y: A and paths $p, q: x \rightsquigarrow y$, there exists a 2-path $p \rightsquigarrow q$.

$$\prod_{x: A} \prod_{y: A} \prod_{p: (x=y)} \prod_{q: (x=y)} \sup_{q: (x=y)} \mathsf{supp}(p=q)$$

3 for all x, y : A, paths $p, q : x \rightsquigarrow y$, and 2-paths $r, s : p \rightsquigarrow q$, there exists a 3-path $r \rightsquigarrow s$.

4 . . .

Internalizing h-props

Suppose
$$h: \prod_{x:A} \prod_{y:A} (x = y).$$

What does it mean that h(x, y) "varies continuously" with x, y? 1 It takes paths to paths: for $p: (x_1 = x_2)$ and $q: (y_1 = y_2)$:

$$\begin{array}{c|c} x_1 & \xrightarrow{h(x_1, y_1)} & y_1 \\ & \searrow & & & y_1 \\ p & & & & & & \\ p & & & & & & \\ x_2 & \xrightarrow{h(x_2, y_2)} & y_2 \end{array}$$

2 It takes 2-paths to 2-paths...

These are all things we expect to exist anyway in an h-prop!

26/45

Internalizing h-props

Thus, it would be enough to define

$$\mathsf{isProp}(A) \coloneqq \mathsf{supp}\left(\prod_{x \colon A} \prod_{y \colon A} (x = y)\right).$$

But amazingly, $\prod_{x \in A} \prod_{y \in A} (x = y)$ is already an h-prop, even though (x = y) is not!

Definition

$$\operatorname{isProp}(A) \coloneqq \prod_{x \in A} \prod_{y \in A} (x = y)$$

Theorem

For any A, we can construct a term in

Internalizing h-props

In fact, $\prod_{x:A} \prod_{y:A} (x = y)$ is also sufficient to make A an h-prop!

Example

Suppose p, q: (x = y).

27/45

Homotopy levels

"Definition"

A type is *n*-truncated if it has no nontrivial *k*-paths for any k > n.

- Sets are the 0-truncated types.
- S¹ is 1-truncated.
- The type of sets (that is, the type whose points are sets) is 1-truncated.
- The type of *n*-truncated types is (n + 1)-truncated.
- *S*², and the type Type of all types, are not *n*-truncated for any *n*.

Negative thinking

Observations

- A *k*-path in *A* is a (k 1)-path in (x = y) for some x, y : A.
- Thus A is *n*-truncated $\iff (x = y)$ is (n 1)-truncated for all x, y : A.

We've seen that if *A* is 0-truncated, then (x = y) is an h-prop. Thus it makes sense to define

Definition

A type is (-1)-truncated if it is an h-prop.

By induction, starting with n = (-1):

Definition

A type A is

- (-1)-truncated if it is an h-prop, and
- (n + 1)-truncated if (x = y) is *n*-truncated for all x, y : A.

```
Fixpoint isTrunc (n:nat) (A:Type) : Type :=
match n with
   | -1 => isProp A
   | S n' => forall (x y:A), isTrunc n' (x == y)
end.
```

31/45

More negative thinking

What can we say about (x = y) if A is an h-prop?

- it is an h-prop.
- it is inhabited.

Definition

A type is contractible, or (-2)-truncated, if it is an inhabited h-prop.

(After this point, it's "turtles all the way down": (-3)-truncated is the same as (-2)-truncated.)

Alternative contractibility

Suppose *A* is contractible; thus we have *a*: *A* and

$$h$$
: isProp(A) := $\prod_{x:A} \prod_{y:A} (x = y)$.

Then

$$(a,h(a)): \sum_{x:A} \prod_{y:A} (x=y).$$

Conversely, if

$$(a,k)$$
: $\sum_{x:A} \prod_{y:A} (x=y)$

then a: A and

$$\lambda x^{A}y^{A}.(!k(x) @ k(y)): isProp(A).$$

Alternative contractibility

It turns out that

$$\operatorname{isContr}(A) \coloneqq \sum_{x \colon A} \prod_{y \colon A} (x = y)$$

is also always an h-prop. So we can start the induction at -2:

Definition

A type A is

- (-2)-truncated if it is contractible, and
- (n + 1)-truncated if (x = y) is *n*-truncated for all x, y : A.

This is what we usually do in practice.

Definition

A type has h-level *n* if it is (n-2)-truncated.

Definition

A function $f: A \to B$ is a homotopy equivalence if there exists $g: B \to A$ and homotopies $g \circ f \sim id_A$ and $f \circ g \sim id_B$.

$$\mathsf{isEquiv}(f) \coloneqq \mathsf{supp}\left(\sum_{g: B o A} \left((g \circ f = \mathsf{id}_A) imes (f \circ g = \mathsf{id}_B) \right)
ight)$$

This would not be an h-prop without supp. Can we avoid it?

35/45

Back to bijections

A function $f: A \rightarrow B$ between sets is a bijection if

- **1** There exists $g: B \to A$ such that $g \circ f = id_A$ and $f \circ g = id_B$.
- **2** OR: For each $b \in B$, the set $f^{-1}(b)$ is a singleton.
- **3** OR: There exists $g: B \to A$ such that $g \circ f = id_A$ and also $h: B \to A$ such that $f \circ h = id_B$.

37/45

Better equivalences

Definition The homotopy fiber of $f: A \rightarrow B$ at b: B is

$$\mathsf{hfiber}(f,b) \coloneqq \sum_{x \colon A} (f(x) = b).$$

Definition (Voevodsky) f is an equivalence if each hfiber(f, b) is contractible:

$$isEquiv(f) := \prod_{b: B} isContr(hfiber(f, b))$$

This is an h-prop.

H-isomorphisms

Definition (Joyal)

 $f: A \to B$ is an h-isomorphism if we have $g: B \to A$ and a homotopy $g \circ f \sim id_A$, and also $h: B \to A$ and a homotopy $f \circ h \sim id_B$.

$$\mathsf{isHIso}(f) \coloneqq \left(\sum_{g \colon B \to A} (g \circ f = \mathsf{id}_A)\right) \times \left(\sum_{h \colon B \to A} (f \circ h = \mathsf{id}_B)\right)$$

This is also an h-prop.

Adjoint equivalences

Given a homotopy equivalence, we can also ask for more coherence from $r: (g \circ f = id_A)$ and $s: (f \circ g = id_B)$. (1a) For all b: B, we have u(b): (r(g(b)) = map(g, s(b))). (1b) For all a: A, we have v(a): (map(f, r(a)) = s(f(a))). (2a) For all b: B, we have $\dots v(g(b) \dots map(g, u(b)) \dots$ (2b) For all a: A, we have $\dots u(f(a) \dots map(f, v(a)) \dots$

This gives an h-prop if we stop between any (na) and (nb).

Definition

f is an adjoint equivalence if we have *g*, *r*, *s*, and *u*.

$$\mathsf{isAdjEquiv}(f) \coloneqq \sum_{g: B o A} \sum_{r: \dots} \sum_{s: \dots} \left(r(g(b)) = \mathsf{map}(g, s(b)) \right)$$

40/45

All equivalences are the same

Theorem

The following are equivalent:

1 *f* is a homotopy equivalence.

- 2 f is a (Voevodsky) equivalence.
- 3 f is a (Joyal) h-isomorphism.
- 4 f is an adjoint equivalence.

The last three are supp-free h-props, so we have equivalences

$$sEquiv(f) \simeq isHIso(f) \simeq isAdjEquiv(f)$$

Definition

The type of equivalences between A, B: Type is

$$\mathsf{Equiv}(A,B) := \sum_{f: A \to B} \mathsf{isEquiv}(f)$$

The univalence axiom

For A, B: Type, we have

pathToEquiv_{A,B}: $(A = B) \rightarrow \text{Equiv}(A, B)$

defined by induction on paths. Note: (A = B) is a path-type of "Type".

Axiom (Univalence)

For all A, B, the function pathToEquiv_{A,B} is an equivalence.

 $\prod_{A: \text{Type}} \prod_{B: \text{Type}} \text{isEquiv}(\text{pathToEquiv}_{A,B})$

In particular, every equivalence yields a path between types.

Remarks about univalence

- **1** Univalence implies function extensionality (Voevodsky).
- Would like to formulate univalence (and, hence, function extensionality) "computationally". Some progress is being made (Harper-Licata).
- **3** In set-theoretic models, univalence should correspond to "object classifiers" in " $(\infty, 1)$ -toposes" (Rezk, Lurie)
- 4 So far, only a few actual models known (coherence issues).
- 6 Many other uses.

