Categorical models of type theory

Michael Shulman

February 28, 2012

/43

Theories and models

Example

The theory of a group asserts an identity e, products x - y and
inverses x~! for any x, y, and equalities x - (y - 2) = (x - y) - z
andx-e=x=e-xandx-x ' =e.

v

A model of this theory (in sets) is a particularmparticular
group, like Z or S3.

A model in spaces is a fopological group.
A model in manifolds is a Lie group.

v

v

/43

Group obijects in categories

Definition

A group object in a category with finite products is an object G
with morphisms e: 1 — G, m: Gx G— G,and i: G — G, such
that the following diagrams commute.

mx1 (e,1)

GxGxG—GxG G—5G

A N

GXG?G

Categorical semantics

Categorical semantics is a general procedure to go from
1. the theory of a group to
2. the notion of group object in a category.

A group object in a category is a model of the theory of a group.

Then, anything we can prove formally in the theory of a group
will be valid for group objects in any category.

Doctrines

For each kind of type theory there is a corresponding kind of
structured category in which we consider models.

Algebraic theory «+— Category with finite products
Simply typed A-calculus «+— Cartesian closed category
Dependent type theory «+— Locally c.c. category

A doctrine specifies
» A collection of type constructors (e.g. x), and

» A categorical structure realizing those constructors as
operations (e.g. cartesian products).

Theores and models

Once we have fixed a doctrine D, then

» A D-theory specifies “generating” or “axiomatic” types and
terms.

» A D-category is one possessing the specified structure.

» A model of a D-theory T in a D-category C realizes the
types and terms in T as objects and morphisms of C.

The doctrine of finite products

Definition
A finite-product theory is a type theory with unit and x as the
only type constructors, plus any number of axioms.

Example
The theory of magmas has one axiomatic type M, and
axiomatic terms

Fe: M and x:My: M+ (x-y): M

For monoids or groups, we need equality axioms (later).

Models of finite-product theories

T a finite-product theory, C a category with finite products.
Definition
A model of T in C assigns

1. To each type Ain T, an object [A] in C

2. To each judgment derivable in T:
Xy:Aq,....,Xn: ApEb: B
a morphism in C:
[A1] % - x [Ad] 2 [B].

3. Such that [A x B] = [A] x [B], etc.

43

Models of finite-product theories
To define a model of T in C, it suffices to interpret the axioms.

Example
A model of the theory of magmas in C consists of
» An object [M].

» A morphism 1 1], M].
» A morphism [M] x [M] 11, [M].
Given this, any other term like
XMy Mz.ME x-(y-2): M

is automatically interpreted by the composite

[M] x [M] x [M] 22 g g 2 g

10/43

Complete theories

Definition
The complete theory Th(C) of a D-category C has
» As axiomatic types, all the objects of C.

» As axiomatic terms, all the morphisms of C.

Remarks

» The theory Th(C) has a tautological model in C.

» A model of T in C is equivalently a translation of T into
Th(C).

» Reasoning in Th(C), or a subtheory of it, is a way to prove
things specifically about C.

11/43

Syntactic categories

Definition

The syntactic category Syn(T) of a D-theory T has
» As objects, exactly the types of T.
» As morphisms, exactly the terms of T.

Remarks

» The theory T has a tautological model in Syn(T).

» A model of T in C is equivalently a structure-preserving
functor Syn(T) — C.

» Thatis, Syn(T) — C is the free D-category generated by a
model of T.

» Studying Syn(T) categorically can yield meta-theoretic
information about T.

12/43

The syntax—semantics adjunction

There are bijections between:
1. Models of a theory T in a category C
2. Structure-preserving functors Syn(T) — C
3. Translations T — Th(C)

Hence Syn is left adjoint to Th.

syntactic category

Type theories Categories

complete theory

Depending on how you set things up, you can make this
adjunction an equivalence.

13/43

Why categorical semantics

» When we prove something in a particular type theory, like
the theory of a group, it is then automatically valid for
models of that theory in all different categories.

» We can use type theory to prove things about a particular
category by working in its complete theory.

» We can use category theory to prove things about a type
theory by working with its syntactic category.

14/43

A list of doctrines

unit

0

product A x B
disjoint union A+ B
function type A — B

terminal object

initial object

categorical product

categorical coproduct
exponentials (cartesian closure)

[1111]

To include a type constructor in a doctrine, we have to specify
meanings for

1. the type constructor (an operation on objects)
2. its constructors, and
3. its eliminators.

16/43

Universal properties

The categorical versions of type constructors are generally
characterized by universal properties.

Definition
A left universal property for an object X of a category is a way

of describing hom(X, Z) up to isomorphism for every object Z,
which is “natural in Z”.

Examples

» hom(0, Z) = x.
» hom(A+ B, Z) = hom(A, Z) x hom(B, Z).

Definition

A right universal property for an object X of a category is a way
of describing hom(Z, X) up to isomorphism for every object Z,
which is “natural in Z”.

17/43

Uniqueness of universal properties

Theorem

If X and X' have the same universal property, then X = X'.
Example

Suppose hom(, Z) = x and hom(()/, Z) = « for all Z.

» Then hom(0, #") = « and hom((’, 0)
morphisms () — @’ and ¢/ — (.

» Also hom(f,) = x and hom(®’, (') = *, so the composites

0 =0 —=0and 0 — 0 — (' must be identities.

*, SO we have

18/43

Interpreting positive types
Positive type constructors are generally interpreted by objects
with left universal properties.
» The constructors are given as data along with the objects.
» The eliminators are obtained from the universal property.

Example
An initial object has hom(0, Z) = x.
» No extra data (no constructors).

» For every Z, we have a unique morphism () — Z (the
eliminator “abort” or “match with end”).

19/43

Interpreting positive types
Positive type constructors are generally interpreted by objects
with left universal properties.
» The constructors are given as data along with the objects.
» The eliminators are obtained from the universal property.

Example

A coproduct of A, B has morphisms inl: A— A+ B and
inr: B— A+ B, such that composition with inl and inr:

hom(A+ B,Z) — hom(A, Z) x hom(B, Z)

is a bijection.
» Two data inl and inr (type constructors of a disjoint union).

» Given A — Z and B — Z, we have a unique morphism
A+ B — Z (the eliminator, definition by cases).

19/43

Interpreting negative types

Negative type constructors are generally interpreted by objects
with right universal properties.

» The eliminators are given as data along with the objects.
» The constructors are obtained from the universal property.

Example

An exponential of A, B has a morphism ev: BA x A — B, such
that composition with ev:

hom(Z, BA) — hom(Z x A, B)

is a bijection.
» One datum ev (eliminator of function types, application).

» Given a morphism A — B, we have a unique element of BA
(the constructor, A-abstraction).

20/43

Cartesian products are special

Definition
A product of A, B has morphisms pry: Ax B —+ Aand
pro: A x B — B, such that composition with pry; and pr,:

hom(Z, A x B) — hom(Z, A) x hom(Z, B)
is a bijection.

» This is a right universal property. .. but we said products
were a positive type!

» Also: we already used products x in other places!

21/43

How to deal with products

Backing up: how do we interpret terms
x:Ay:BFc:C

if we don’t have the type constructor x?
(i.e. if our category of types doesn’t have products?)

1. Work in a cartesian multicategory: in addition to
morphisms A — C we have “multimorphisms” A, B — C.

2. OR: associate objects to contexts rather than types.

These are basically equivalent. The first is arguably better; the
second is simpler to describe and generalize.

22/43

Display object categories

Definition

A display object category is a category with
» A terminal object.
» A subclass of its objects called the display objects.
» The product of any object by a display object exists.

Idea

» The objects represent contexts.

» The display objects represent singleton contexts x: A,
which are equivalent to types.

» Think of non-display objects as “formal products” of display
objects.

23/43

Examples of d.o. categories

Example
Any category having products and a terminal object (e.g. sets),
with all objects being display.

Example

To define Syn(T) when the doctrine lacks products:
» objects = contexts
» morphisms = tuples of terms
» display objects = singleton contexts

24/43

Contexts in d.o. categories

Now we interpret types by display objects, and a term
x:Ay:BFc:C

by a morphism
[A] > [B] — [C]

where [A] x [B] interprets the context x: A, y: B, and need not
be a display object itself.

Similarly, a term F ¢: C in the empty context gives a morphism
1 — [C] out of the terminal object 1, which may not be display.

25/43

Products in d.o. categories

The left universal property for the positive product type:

XAy Brz:Z
p: Ax BFmatch(...): Z

Definition
Given display objects A and B, a display product is a display
object P with a morphism A x B — P, such that composition
with it:

hom(P,Z) — hom(A x B, 2)

is a bijection.

It follows that A x B — P is an isomorphism, so we are really
just saying that display objects are closed under products.

26/43

Other types in d.o. categories

» Products: Display objects are closed under products.

» Disjoint unions: any two display objects have a coproduct
which is also a display object, and products distribute over
coproducts.

» (): there is an initial object that is a display object.
» unit: The terminal object is a display object.

» Function types: any two display objects have an
exponential which is also a display object.

27/43

Dependent contexts
Question
If B: A— Type, how do we interpret a judgment
x:A y:B(x)-c.C 7
Partial Answer

If we associate objects to contexis as in a display object
category, this will just be a morphism

[x: A, y: B(x)] — [C]

but what is the object on the left, and how is it related to [A]
and B: A — Type?

Well: there should be a projection [x: A, y: B(x)] — [A].

29/43

Display map categories

Definition
A display map category is a category with
» A terminal object.

» A subclass of its morphisms called the display maps,
denoted B — Aor B — A.

» Any pullback of a display map exists and is a display map.

Remarks

» The objects represent contexts.

» A display map represents a projection [I', y: B] — [I]
(the type B may depend on IN).

» The fiber of this projection over x: T is the type B(x).

» The display objects are those with A — 1 a display map.

30/43

Pullbacks and substitution

The pullback of a display map represents substitution into a
dependent type. Given f: A — B and a dependent type
y: BE C: Type, we have x: A+ C[f(x)/y]: Type.

[CTFC) /Y] ——[C]

L]

(Al —— 8]
In particular, for two types A and B in the empty context:

[A] > [B] — [B]

l

[A] ——1

represents the context x: A, y: B, as in a d.o. category.

31/43

Dependent terms

Given I' - C: Type represented by q: [I', C] — [I'], a term
r-c:C
is represented by a section
[F. C]
[r]

(i.e. gc = 1qrp)

32/43

Non-dependent terms

If Cis independent of I', then q: [I', C] — [I'] is the pullback
[T, C] — [C]

e

M ———1

and sections of it are the same as maps [I'] — [C], as before.

33/43

Dependent sums in d.m. categories

Definition

Given a display object A — 1 and a display map B — A, a
dependent sum is a display object P — 1 with a map B — P,
such that composition with it

hom(P, Z) — hom(B, 2)

is a bijection.
Note: if B — A s the pullback of some C — 1,then B=AXx C
and this is just a product.

As there, it follows that B — P is an isomorphism, so we are
really saying that display maps are closed under composition.

34/43

Dependent products in d.m. categories

Definition

Given A — 1 and B — A, a dependent product is a display
object P — 1 with amap P x A — B over A, such that
composition with it

hom(Z, P) — homx(Z x A, B)
is a bijection.
(Really, we replace 1 by an arbitrary context I' everywhere.)

If the category is locally cartesian closed, this means
display maps are closed under l-functors.

35/43

Universes and dependent types

But if types are just terms of type Type ...

type of types “Type” <«+— universe object U

Examples

» In sets, U = a Grothendieck universe of “small sets”
» In co-groupoids, U = the co-groupoid of small co-groupoids

Then. ..

dependent type A — Type +— morphism A — U
RN display map B - A

36/43

The universal dependent context
A universe object U has to come with a display map
U—-Uu
representing the universal dependent context
A: Type, x: A.

A display map B — A represents a context extension by a type
in U (a “small type”) just when it is a pullback:

]

A——

37/43

Coherence

There are issues with coherence.

g'("B)— 18— B (l9)B—— 8
N
As Ao A Ay —— 5 A

g f

but substitutions in type theory

B(2) = B(f(y)) — B(f(9(x)))
B(z) — B((f o g)(x)) = B(f(9(x)))

are the same.

38/43

Coherence via universes

One solution (Voevodsky)

Interpret dependent types B: A — Type by morphisms
[A] — U, obtaining the corresponding display map by pullback
when necessary. Then substitution is by composition:

A S (AL AL S U
AL ALAa)ySu

and thus strictly associative.

There are other solutions too.

39/43

Display maps in homotopy theory

Question
Which maps can be display maps?

Recall: given B: A — Type, x,y: A, and p: (x = y), we have
the operation of transporting along p:

B(x) B(y)

18] transport(p, u)

=

[A]

41/43

Fibrations

Definition

A map B — A of spaces (or co-groupoids) is a fibration if for
any any path p: x ~ y in A and any point u in the fiber over x,
there is a path u ~~ v lying over p....and such a path can be
chosen to vary continuously in its inputs.

X———B

|

X x[0,1]— A

In homotopy type theory, display maps must be fibrations.

42/43

Transport in fibrations

If B— Ais a fibration, then paths in A act on its fibers by
transporting along lifted paths.
Example
The infinite helix R — S,
» Each fiber is Z.
» Transporting around a loop acts on Z by “+1”.

Example
The inclusion of a point + — S' is not a fibration.
» No way to transport the point « in one fiber any other
(empty) fiber.
» Note: R is homotopy equivalent to x, as a space!

43/43

