
Categorical models of type theory

Michael Shulman

February 28, 2012

1 / 43

Theories and models

Example
The theory of a group asserts an identity e, products x · y and
inverses x−1 for any x , y , and equalities x · (y · z) = (x · y) · z
and x · e = x = e · x and x · x−1 = e.

I A model of this theory (in sets) is a particularparticular
group, like Z or S3.

I A model in spaces is a topological group.
I A model in manifolds is a Lie group.
I . . .

3 / 43

Group objects in categories

Definition
A group object in a category with finite products is an object G
with morphisms e : 1→ G, m : G×G→ G, and i : G→ G, such
that the following diagrams commute.

G ×G ×G
m×1

//

1×m
��

G ×G

m
��

G ×G m
// G

G
(e,1)

//

1
##FFFFFFFFF G ×G

m
��

G
(1,e)

oo

1
{{xxxxxxxxx

G

G
! //

∆
��

1
e // G

G ×G
1×i

// G ×G

m

OO

4 / 43

Categorical semantics

Categorical semantics is a general procedure to go from
1. the theory of a group to
2. the notion of group object in a category.

A group object in a category is a model of the theory of a group.

Then, anything we can prove formally in the theory of a group
will be valid for group objects in any category.

5 / 43

Doctrines

For each kind of type theory there is a corresponding kind of
structured category in which we consider models.

Algebraic theory ←→ Category with finite products
Simply typed λ-calculus ←→ Cartesian closed category
Dependent type theory ←→ Locally c.c. category

...

A doctrine specifies
I A collection of type constructors (e.g. ×), and
I A categorical structure realizing those constructors as

operations (e.g. cartesian products).

6 / 43

Theores and models

Once we have fixed a doctrine D, then
I A D-theory specifies “generating” or “axiomatic” types and

terms.
I A D-category is one possessing the specified structure.
I A model of a D-theory T in a D-category C realizes the

types and terms in T as objects and morphisms of C.

7 / 43

The doctrine of finite products

Definition
A finite-product theory is a type theory with unit and × as the
only type constructors, plus any number of axioms.

Example
The theory of magmas has one axiomatic type M, and
axiomatic terms

` e : M and x : M, y : M ` (x · y) : M

For monoids or groups, we need equality axioms (later).

8 / 43

Models of finite-product theories

T a finite-product theory, C a category with finite products.

Definition
A model of T in C assigns

1. To each type A in T, an object JAK in C
2. To each judgment derivable in T:

x1 : A1, . . . , xn : An ` b : B

a morphism in C:

JA1K× · · · × JAnK
JbK−−→ JBK.

3. Such that JA× BK = JAK× JBK, etc.

9 / 43

Models of finite-product theories
To define a model of T in C, it suffices to interpret the axioms.

Example
A model of the theory of magmas in C consists of
I An object JMK.

I A morphism 1
JeK−−→ JMK.

I A morphism JMK× JMK
J·K−→ JMK.

Given this, any other term like

x : M, y : M, z : M ` x · (y · z) : M

is automatically interpreted by the composite

JMK× JMK× JMK
1×J·K−−−→ JMK× JMK

J·K−→ JMK

10 / 43

Complete theories

Definition
The complete theory Th(C) of a D-category C has
I As axiomatic types, all the objects of C.
I As axiomatic terms, all the morphisms of C.

Remarks
I The theory Th(C) has a tautological model in C.
I A model of T in C is equivalently a translation of T into

Th(C).
I Reasoning in Th(C), or a subtheory of it, is a way to prove

things specifically about C.

11 / 43

Syntactic categories

Definition
The syntactic category Syn(T) of a D-theory T has
I As objects, exactly the types of T.
I As morphisms, exactly the terms of T.

Remarks
I The theory T has a tautological model in Syn(T).
I A model of T in C is equivalently a structure-preserving

functor Syn(T)→ C.
I That is, Syn(T)→ C is the free D-category generated by a

model of T.
I Studying Syn(T) categorically can yield meta-theoretic

information about T.

12 / 43

The syntax–semantics adjunction

There are bijections between:
1. Models of a theory T in a category C
2. Structure-preserving functors Syn(T)→ C
3. Translations T→ Th(C)

Hence Syn is left adjoint to Th.

Type theories Categories

syntactic category

complete theory

Depending on how you set things up, you can make this
adjunction an equivalence.

13 / 43

Why categorical semantics

I When we prove something in a particular type theory, like
the theory of a group, it is then automatically valid for
models of that theory in all different categories.

I We can use type theory to prove things about a particular
category by working in its complete theory.

I We can use category theory to prove things about a type
theory by working with its syntactic category.

14 / 43

A list of doctrines

unit ←→ terminal object
∅ ←→ initial object

product A× B ←→ categorical product
disjoint union A + B ←→ categorical coproduct
function type A→ B ←→ exponentials (cartesian closure)

To include a type constructor in a doctrine, we have to specify
meanings for

1. the type constructor (an operation on objects)
2. its constructors, and
3. its eliminators.

16 / 43

Universal properties
The categorical versions of type constructors are generally
characterized by universal properties.

Definition
A left universal property for an object X of a category is a way
of describing hom(X ,Z) up to isomorphism for every object Z ,
which is “natural in Z ”.

Examples

I hom(∅,Z) ∼= ∗.
I hom(A + B,Z) ∼= hom(A,Z)× hom(B,Z).

Definition
A right universal property for an object X of a category is a way
of describing hom(Z ,X) up to isomorphism for every object Z ,
which is “natural in Z ”.

17 / 43

Uniqueness of universal properties

Theorem
If X and X ′ have the same universal property, then X ∼= X ′.

Example
Suppose hom(∅,Z) ∼= ∗ and hom(∅′,Z) ∼= ∗ for all Z .
I Then hom(∅, ∅′) ∼= ∗ and hom(∅′, ∅) ∼= ∗, so we have

morphisms ∅ → ∅′ and ∅′ → ∅.
I Also hom(∅, ∅) ∼= ∗ and hom(∅′, ∅′) ∼= ∗, so the composites
∅ → ∅′ → ∅ and ∅′ → ∅ → ∅′ must be identities.

18 / 43

Interpreting positive types
Positive type constructors are generally interpreted by objects
with left universal properties.
I The constructors are given as data along with the objects.
I The eliminators are obtained from the universal property.

Example
An initial object has hom(∅,Z) ∼= ∗.
I No extra data (no constructors).
I For every Z , we have a unique morphism ∅ → Z (the

eliminator “abort” or “match with end”).

19 / 43

Interpreting positive types
Positive type constructors are generally interpreted by objects
with left universal properties.
I The constructors are given as data along with the objects.
I The eliminators are obtained from the universal property.

Example
A coproduct of A,B has morphisms inl : A→ A + B and
inr : B → A + B, such that composition with inl and inr:

hom(A + B,Z)→ hom(A,Z)× hom(B,Z)

is a bijection.
I Two data inl and inr (type constructors of a disjoint union).
I Given A→ Z and B → Z , we have a unique morphism

A + B → Z (the eliminator, definition by cases).

19 / 43

Interpreting negative types

Negative type constructors are generally interpreted by objects
with right universal properties.
I The eliminators are given as data along with the objects.
I The constructors are obtained from the universal property.

Example
An exponential of A,B has a morphism ev : BA × A→ B, such
that composition with ev:

hom(Z ,BA)→ hom(Z × A,B)

is a bijection.
I One datum ev (eliminator of function types, application).
I Given a morphism A→ B, we have a unique element of BA

(the constructor, λ-abstraction).

20 / 43

Cartesian products are special

Definition
A product of A,B has morphisms pr1 : A× B → A and
pr2 : A× B → B, such that composition with pr1 and pr2:

hom(Z ,A× B)→ hom(Z ,A)× hom(Z ,B)

is a bijection.

I This is a right universal property. . . but we said products
were a positive type!

I Also: we already used products × in other places!

21 / 43

How to deal with products

Backing up: how do we interpret terms

x : A, y : B ` c : C

if we don’t have the type constructor ×?
(i.e. if our category of types doesn’t have products?)

1. Work in a cartesian multicategory: in addition to
morphisms A→ C we have “multimorphisms” A,B → C.

2. OR: associate objects to contexts rather than types.

These are basically equivalent. The first is arguably better; the
second is simpler to describe and generalize.

22 / 43

Display object categories

Definition
A display object category is a category with
I A terminal object.
I A subclass of its objects called the display objects.
I The product of any object by a display object exists.

Idea
I The objects represent contexts.
I The display objects represent singleton contexts x : A,

which are equivalent to types.
I Think of non-display objects as “formal products” of display

objects.

23 / 43

Examples of d.o. categories

Example
Any category having products and a terminal object (e.g. sets),
with all objects being display.

Example
To define Syn(T) when the doctrine lacks products:
I objects = contexts
I morphisms = tuples of terms
I display objects = singleton contexts

24 / 43

Contexts in d.o. categories

Now we interpret types by display objects, and a term

x : A, y : B ` c : C

by a morphism
JAK× JBK→ JCK

where JAK× JBK interprets the context x : A, y : B, and need not
be a display object itself.

Similarly, a term ` c : C in the empty context gives a morphism
1→ JCK out of the terminal object 1, which may not be display.

25 / 43

Products in d.o. categories

The left universal property for the positive product type:

x : A, y : B ` z : Z
p : A× B ` match(. . .) : Z

Definition
Given display objects A and B, a display product is a display
object P with a morphism A× B → P, such that composition
with it:

hom(P,Z)→ hom(A× B,Z)

is a bijection.

It follows that A× B → P is an isomorphism, so we are really
just saying that display objects are closed under products.

26 / 43

Other types in d.o. categories

I Products: Display objects are closed under products.
I Disjoint unions: any two display objects have a coproduct

which is also a display object, and products distribute over
coproducts.

I ∅: there is an initial object that is a display object.
I unit: The terminal object is a display object.
I Function types: any two display objects have an

exponential which is also a display object.

27 / 43

Dependent contexts

Question
If B : A→ Type, how do we interpret a judgment

x : A, y : B(x) ` c : C ?

Partial Answer
If we associate objects to contexts as in a display object
category, this will just be a morphism

Jx : A, y : B(x)K→ JCK

but what is the object on the left, and how is it related to JAK
and B : A→ Type?

Well: there should be a projection Jx : A, y : B(x)K→ JAK.

29 / 43

Display map categories

Definition
A display map category is a category with
I A terminal object.
I A subclass of its morphisms called the display maps,

denoted B � A or B _ A.
I Any pullback of a display map exists and is a display map.

Remarks
I The objects represent contexts.
I A display map represents a projection JΓ, y : BK� JΓK

(the type B may depend on Γ).
I The fiber of this projection over x : Γ is the type B(x).
I The display objects are those with A� 1 a display map.

30 / 43

Pullbacks and substitution
The pullback of a display map represents substitution into a
dependent type. Given f : A→ B and a dependent type
y : B ` C : Type, we have x : A ` C[f (x)/y] : Type.

JC[f (x)/y]K //

����

JCK

����

JAK
f

// JBK

In particular, for two types A and B in the empty context:

JAK× JBK //

����

JBK

����

JAK // // 1

represents the context x : A, y : B, as in a d.o. category.

31 / 43

Dependent terms

Given Γ ` C : Type represented by q : JΓ,CK� JΓK, a term

Γ ` c : C

is represented by a section

JΓ,CK

q

����

JΓK

c

@@

(i.e. qc = 1JΓK)

32 / 43

Non-dependent terms

If C is independent of Γ, then q : JΓ,CK� JΓK is the pullback

JΓK

JΓ,CK JCK

1

q

and sections of it are the same as maps JΓK→ JCK, as before.

33 / 43

Dependent sums in d.m. categories

Definition
Given a display object A� 1 and a display map B � A, a
dependent sum is a display object P � 1 with a map B → P,
such that composition with it

hom(P,Z)→ hom(B,Z)

is a bijection.
Note: if B � A is the pullback of some C � 1, then B = A× C
and this is just a product.

As there, it follows that B → P is an isomorphism, so we are
really saying that display maps are closed under composition.

34 / 43

Dependent products in d.m. categories

Definition
Given A� 1 and B � A, a dependent product is a display
object P � 1 with a map P × A→ B over A, such that
composition with it

hom(Z ,P)→ homA(Z × A,B)

is a bijection.

(Really, we replace 1 by an arbitrary context Γ everywhere.)

If the category is locally cartesian closed, this means
display maps are closed under Π-functors.

35 / 43

Universes and dependent types

But if types are just terms of type Type . . .

type of types “Type” ←→ universe object U

Examples

I In sets, U = a Grothendieck universe of “small sets”
I In∞-groupoids, U = the∞-groupoid of small∞-groupoids

Then. . .

dependent type A→ Type ←→ morphism A→ U
?←→ display map B � A

36 / 43

The universal dependent context

A universe object U has to come with a display map

Ũ � U

representing the universal dependent context

A : Type, x : A.

A display map B � A represents a context extension by a type
in U (a “small type”) just when it is a pullback:

B //

����

_� Ũ

����

A // U

37 / 43

Coherence

There are issues with coherence.

g∗(f ∗B) //

����

_� f ∗B //

����

_� B

����

A3 g
// A2 f

// A1

6=

(fg)∗B //

����

_� B

����

A3 fg
// A1

but substitutions in type theory

B(z) 7→ B(f (y)) 7→ B(f (g(x)))

B(z) 7→ B((f ◦ g)(x)) = B(f (g(x)))

are the same.

38 / 43

Coherence via universes

One solution (Voevodsky)
Interpret dependent types B : A→ Type by morphisms
JAK→ U, obtaining the corresponding display map by pullback
when necessary. Then substitution is by composition:

A3
g−→ (A2

f−→ A1
B−→ U)

(A3
g−→ A2

f−→ A1)
B−→ U

and thus strictly associative.

There are other solutions too.

39 / 43

Display maps in homotopy theory

Question
Which maps can be display maps?

Recall: given B : A→ Type, x , y : A, and p : (x = y), we have
the operation of transporting along p:

x y

p

B(x) B(y)

u
transport(p,u)

JBK

JAK

41 / 43

Fibrations

Definition
A map B → A of spaces (or∞-groupoids) is a fibration if for
any any path p : x y in A and any point u in the fiber over x ,
there is a path u v lying over p.. . . and such a path can be
chosen to vary continuously in its inputs.

X
u //

0
��

B

����

X × [0,1] p
//

::

A

In homotopy type theory, display maps must be fibrations.

42 / 43

Transport in fibrations

If B � A is a fibration, then paths in A act on its fibers by
transporting along lifted paths.

Example
The infinite helix R→ S1.
I Each fiber is Z.
I Transporting around a loop acts on Z by “+1”.

Example
The inclusion of a point ∗ → S1 is not a fibration.
I No way to transport the point ∗ in one fiber any other

(empty) fiber.
I Note: R is homotopy equivalent to ∗, as a space!

43 / 43

