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Homotopy theory

Switching gears
Today will be almost all classical mathematics, in set theory or
whatever foundation you prefer.

Slogan
Homotopy theory is the study of 1-categories whose objects
are not just “set-like” but contain paths and higher paths.
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Homotopies and equivalences

Question
What structure on a category C describes a “homotopy theory”?

We expect to have:
1 A notion of homotopy between morphisms, written f ∼ g.

This indicates we have paths f (x) g(x), varying nicely
with x .

Given this, we can “homotopify” bijections:

Definition
A homotopy equivalence is f : A→ B such that there exists
g : B → A with fg ∼ 1B and gf ∼ 1A.
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Examples

• C = topological spaces, homotopies A× [0,1]→ B.
• C = chain complexes, with chain homotopies.
• C = categories, with natural isomorphisms.
• C =∞-groupoids, with “natural equivalences”
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∞-groupoids

Definition
Today, an∞-groupoid means an algebraic structure:

1 Sets and “source, target” functions:

· · ·⇒ Xn ⇒ · · ·⇒ X2 ⇒ X1 ⇒ X0

X0 = objects, X1 = paths or morphisms,
X2 = 2-paths or 2-morphisms, . . .

2 Composition/concatenation operations
e.g. p : x  y and q : y  z yield p@q : x  z.

3 These operations are coherent up to all higher paths.

A topological space Z gives rise to an∞-groupoid Π∞(Z ).
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∞-functors

There are two ways to define morphisms of∞-groupoids:
1 strict functors, which preserve all composition operations

on the nose.
2 weak functors, which preserve operations only up to

specified coherent equivalences.
Which should we use?

• We want to include weak functors in the theory.
• But the category of weak functors is ill-behaved: it lacks

limits and colimits.
• The category of strict functors is well-behaved, but seems

to miss important information.
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Cofibrant objects

Theorem
If A is a free∞-groupoid, then any weak functor f : A→ B is
equivalent to a strict one.

Proof.
Define f̃ : A→ B as follows:
• f̃ acts as f on the points of A.
• f̃ acts as f on the generating paths in A. Strictness of f̃

then uniquely determines it on the rest.
• f̃ acts as f on the generating 2-paths in A. Strictness then

uniquely determines it on the rest.
• . . .
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Cofibrant replacement

Theorem
Any∞-groupoid is equivalent to a free one.

Proof.
Given A, define QA as follows:
• The objects of QA are those of A.
• The paths of QA are freely generated by those of A.
• The 2-paths of QA are freely generated by those of A.
• . . .

We have q : QA→ A, with a homotopy inverse A→ QA
obtained by sending each path to itself.

However: QA→ A is a strict functor, but A→ QA is not!
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Weak equivalences

Definition
A left derivable category C is one equipped with:
• A class of objects called cofibrant.
• A class of morphisms called weak equivalences such that

• if two of f , g, and gf are weak equivalences, so is the third.

• Every object A admits a weak equivalence QA ∼−→ A from
a cofibrant one.

Remarks

• A “weak morphism” A B in C is a morphism QA→ B.
• In good cases, a weak equivalence between cofibrant

objects is a homotopy equivalence.
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Some left derivable categories
1 ∞-groupoids with strict functors

• cofibrant = free
• weak equivalences = strict functors that have homotopy

inverse weak functors.
2 chain complexes

• cofibrant = complex of projectives
• weak equivalence = homology isomorphism

3 topological spaces
• cofibrant = CW complex
• weak equivalence = isomorphism on all higher homotopy

groups πn

4 topological spaces
• cofibrant = everything
• weak equivalence = homotopy equivalence

The homotopy theories of∞-groupoids and topological spaces
(CW complexes) are equivalent, via Π∞.
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Cylinder objects
What happened to our “notion of homotopy”?

Definition
A cylinder object for A is a diagram

A

i0 ##FFFFFFF 1A

!!

Cyl(A)
∼ // A

A

i1
;;xxxxxxx

1A

==

Examples

• In topological spaces, A× [0,1].
• In chain complexes, A⊗ (Z→ Z⊕ Z).
• In∞-groupoids, A× I, where I has two isomorphic objects.
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Left homotopies

Definition
A left homotopy f ∼ g is a diagram

A

i0 ##FFFFFFF f

!!

Cyl(A) // B

A

i1
;;xxxxxxx

g

==

for some cylinder object of A.

Remark
For the previous cylinders, this gives the usual notions.
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Duality

Definition
A right derivable category C is one equipped with:
• A class of objects called fibrant.
• A class of morphisms called weak equivalences, satisfying

the 2-out-of-3 property.
• Every object A admits a weak equivalence A ∼−→ RA to a

fibrant one.

14 / 52



Path objects

A path object for A is a diagram

A

A
∼ //

1A //

1A
//

Path(A)
ev0

$$HHHHHHH

ev1

::vvvvvvv

A

Example
In topological spaces, Path(A) = A[0,1], with ev0,ev1 evaluation
at the endpoints.
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Right homotopies

A right homotopy f ∼ g is a diagram

B

A //

g //

f //

Path(B)
p0

$$HHHHHHH

p1

::vvvvvvv

B

Example
For the previous path object in topological spaces, this is again
the usual notion.
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Simplicial sets
Definition
A simplicial set X is a combinatorial structure of:

1 A set X0 of vertices or 0-simplices
2 A set X1 of paths or 1-simplices, each with assigned

source and target vertices
3 A set X2 of 2-simplices with assigned boundaries

4 . . .

• A simplicial set X has a geometric realization |X |, a
topological space built out of topological simplices ∆n

according to the data of X .
• A topological spaces Z has a singular simplicial set S∗(Z )

whose n-simplices are maps ∆n → Z .
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Kan complexes

We can also think of a simplicial set as a model for an
∞-groupoid via

n-simplices = n-paths

but it doesn’t have composition operations.

Definition
A simplicial set is fibrant (or: a Kan complex) if

1 Every “horn” can be “filled” to a 2-simplex.
2 etc. . . .

If Y is not fibrant, then there may not be enough maps X → Y ;
some of the composite simplices that “should” be there in Y are
missing.
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Homotopy theory of simplicial sets

• Fibrant objects = Kan complexes
• Weak equivalences = maps that induce equivalences of

geometric realization

This is also equivalent to∞-groupoids.
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Diagram categories

Question
If C has a homotopy theory, does a functor category CD have
one?

Fact
A natural transformation α : F → G is a natural isomorphism iff
each component αx is an isomorphism.

Definition
A weak equivalence in CD is a natural transformation such that
each component is a weak equivalence in C.
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Homotopy natural transformations

Question
If α : F → G has each component αx a homotopy equivalence,
is α a homotopy equivalence?

Let βx : Gx → Fx be a homotopy inverse to αx . Then for
f : x → y ,

βy ◦G(f ) ∼ βy ◦G(f ) ◦ αx ◦ βx

= βy ◦ αy ◦ F (f ) ◦ βx

∼ F (f ) ◦ βx

So β is only a natural transformation “up to homotopy”.

Conclusion: the “weak morphisms” of functors should include
“homotopy-natural transformations”.
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Fibrant diagrams

Question
For what sort of functor G is every homotopy-natural
transformation F → G equivalent to a strictly natural one?

Consider D = (0→ 1), so CD is the category of arrows in C.

F0 //

��

'

G0

��

F1 // G1
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Fibrations
Theorem
For g : G0 → G1 in spaces, the following are equivalent.

1 Every homotopy commutative square into g is homotopic
to a commutative one with the bottom map fixed:

F0
h0 //

f
��
'

G0

g
��

F1 h1

// G1

=
F0

h0 ((

66
'

f
��

G0

g
��

F1 h1

// G1

2 g is a fibration:
X //

0
��

G0

g
��

X × [0,1] //

99

G1
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Proof: 1⇒ 2

X //

0
��

G0

g
��

X × [0,1] // G1

←→

X //

'

G0

g
��

X // G1

X //

0
��

G0

g
��

X × [0,1] //

::uuuuuuuuuu
G1

←→
X

((

66
' G0

g
��

X // G1
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Proof: 2⇒ 1

F0
h0 //

f
��
'

G0

g
��

F1 h1

// G1

←→

F0
h0 //

0
��

G0

g
��

F0
1 //

h1f

99
F0 × [0,1] // G1

F0

h0 ((

66
'

f
��

G0

g
��

F1 h1

// G1

←→

F0
h0 //

0
��

G0

g
��

F0
1 //

h1f

99
F0 × [0,1] //

99ssssssss
G1
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Fibrations and cofibrations

Conclusions

• Fibrations can be the fibrant objects in the category of
arrows.

• Similarly, cofibrations (defined dually) can be the cofibrant
objects.

• A “category with homotopy theory” should have notions of
fibration and cofibration.

• And maybe more stuff, for diagrams CD other than arrows?
• This is starting to look like a mess!
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Lifting properties

Definition
Given i : X → Y and q : B → A in a category, we say i � q if any
commutative square

X //

i
��

B
q

��

Y //

??

A

admits a dotted filler.

• I� = { q | i � q ∀i ∈ I }
• �Q = { i | i � q ∀q ∈ Q }
• fibrations = {X → X × [0,1]}�
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Closure properties of lifting properties

Lemma
If i � q, then i � (any pullback of q).

Proof.

X //

i
��

D //

��

_� B
q

��

Y //

77
??

C // A

• Similarly, (any pushout of i) �q.
• Also closed under retracts.
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Weak factorization systems

Definition
A weak factorization system in a category is (I,Q) such that

1 I = �Q and Q = I�.
2 Every morphism factors as q ◦ i for some q ∈ Q and i ∈ I.

Examples

• in sets, I = surjections, Q = injections.
• in sets, I = injections, Q = surjections.

Note:
(

�(I�), I�
)

always satisfies condition 1.

• Q = fibrations = {X → X × [0,1]}�
I = �Q
Factorization?
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The mapping path space

Definition
Given g : X → Y in topological spaces, its mapping path space
is the pullback

Ng //

��
ρg

))

X

��

Paths(Y )
ev0 //

ev1

��

Y

Y

Ng = { (x , y , α) | x ∈ X , y ∈ Y , α : g(x) y }

and ρg(x , y , α) = y .
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Acyclic cofibrations

Facts

• ρg : Ng → Y is a fibration.
• The map λg : X → Ng defined by x 7→ (x ,g(x), cg(x)) is a

cofibration and a homotopy equivalence.

• The composite X
λg−→ Ng

ρg−→ Y is g.
• �(fibrations) = (cofibrations) ∩ (homotopy equivalences)

Definition
An acyclic cofibration is a cofibration that is also a homotopy
equivalence.

Theorem
(acyclic cofibrations, fibrations) is a weak factorization system.
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Mapping cylinders

Given g : X → Y , its mapping cylinder is the pushout

X
g

//

0
��

Y

��

Cyl(X ) // Mg

Y

X
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Acyclic fibrations

Facts

• X → Mg is a cofibration
• Mg → Y is a fibration and a homotopy equivalence.
• The composite X → Mg → Y is g.
• (cofibrations)� = (fibrations) ∩ (homotopy equivalences)

Definition
An acyclic fibration is a fibration that is also a homotopy
equivalence.

Theorem
(cofibrations, acyclic fibrations) is a weak factorization system.
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Model categories

Definition (Quillen)
A model category is a category C with limits and colimits and
three classes of maps:
• C = cofibrations
• F = fibrations
• W = weak equivalences

such that
1 W has the 2-out-of-3 property.
2 (C ∩W,F) and (C,F ∩W) are weak factorization systems.

Not all “categories with homotopy” are model categories, but
very many are. When it exists, a model category is a very
convenient framework.
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Homotopy theory in a model category

• X is cofibrant if ∅ → X is a cofibration.
• Y is fibrant if Y → 1 is a fibration.
• For any X , we have ∅ → QX → X with QX cofibrant and

QX → X an acyclic fibration (hence a weak equivalence).
• For any Y , we have Y → RY → 1 with RX fibrant and

Y → RY an acyclic cofibration.
• Any X has a very good cylinder object

X + X cof.−−→ Cyl(X )
acyc. fib.−−−−−→ X

• Any Y has a very good path object

Y
acyc. cof.−−−−−→ Paths(Y )

fib.−→ Y × Y
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Homotopy theory in a model category

Let X and Y be fibrant-and-cofibrant in a model category C.
• Left and right homotopy agree for maps X → Y .
• Homotopy is an equivalence relation on maps X → Y .
• A map X → Y is a weak equivalence iff it is a homotopy

equivalence.
• In good cases, every functor category CD is also a model

category.
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Some model categories

Example
Topological spaces, with
• Fibrations as before
• Cofibrations defined dually
• Weak equivalences = homotopy equivalences

Example
Topological spaces, with
• Fibrations as before
• Cofibrations = homotopy equivalent to rel. cell complexes
• Weak equivalences = maps inducing isos on all πn

The second one is equivalent to∞-groupoids.
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Some model categories

Example
Chain complexes, with
• Fibrations = degreewise-split surjections
• Cofibrations = degreewise-split injections
• Weak equivalences = chain homotopy equivalences

Example
Chain complexes, with
• Fibrations = degreewise surjections
• Cofibrations = degreewise-split injections with projective

cokernel
• Weak equivalences = maps inducing isos on all Hn
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Some model categories

Example
Small categories (or groupoids), with
• Fibrations = functors that lift isomorphisms
• Cofibrations = injective on objects
• Weak equivalences = equivalences of categories

Example
Any category, with
• Fibrations = all maps
• Cofibrations = all maps
• Weak equivalences = isomorphisms
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Simplicial sets

Example
Simplicial sets, with
• Fibrations = Kan fibrations
• Cofibrations = monomorphisms
• Weak equivalences = geometric realization equivalences.

This is unreasonably well-behaved in many ways.
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Display map categories

Recall
A display map category is a category with
• A terminal object.
• A subclass of its morphisms called the display maps,

denoted B � A or B _ A.
• Any pullback of a display map exists and is a display map.

Note: The right class of any weak factorization system can be a
class of display maps.
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Identity types in d.m. categories

The dependent identity type

x : A, y : A ` (x = y) : Type

must be a display map
IdA

����

A× A
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Identity types in d.m. categories
The reflexivity constructor

x : A ` refl(x) : (x = x)

must be a section

∆∗IdA //

����

IdA

����

A
∆

//

??

A× A

or equivalently a lifting

IdA

����

A
∆

//

refl
<<yyyyyyyyy

A× A
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Identity types in d.m. categories

The eliminator says given a dependent type with a section

refl∗C //

����

C

����

A
refl

//

@@

IdA

there exists
a compatible
section

C

����

IdA

@@

In other words, we have the lifting property

A //

refl
��

C

����

IdA

==

IdA
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Identity types in d.m. categories

In fact, refl � all display maps.

A //

refl
��

f ∗C

����

//

_� C

����

IdA

<<

IdA f
// B

Conclusion
Identity types factor ∆: A→ A× A as

A refl−−→ IdA
q
−−� A× A

where q is a display map and refl � (display maps).
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General factorizations
Theorem (Gambino–Garner)
In a display map category that models identity types, any
morphism g : A→ B factors as

A
i // Ng

q
// // B

where q is a display map, and i � all display maps.

Ng = Jy : B, x : A, p : (g(x) = y)K

is the type-theoretic mapping path space.

Corollary

• I = �(display maps)
• Q = I�

is a weak factorization system.
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Modeling identity types

Theorem (Awodey–Warren,Garner–van den Berg)
In a display map category, if(

�(display maps), (�(display maps))�
)

is a well-behaved weak factorization system, then the category
models identity types.

products ←→ categorical products
disjoint unions ←→ categorical coproducts

...
identity types ←→ weak factorization systems
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Type theory of homotopy theory

The model category of simplicial sets is well-behaved.

Conclusion
We can prove things about ordinary homotopy theory by
reasoning inside homotopy type theory.
(The complete theory of simplicial sets).

Interpreted in ordinary homotopy theory,
• Function extensionality holds.
• The univalence axiom holds (Voevodsky).
• A space A is n-truncated just when πk (A) = 0 for k > n.
• An equivalence is a classical (weak) homotopy

equivalence.
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Other homotopy theories

To model homotopy type theory, we need a category that
1 has finite limits and colimits (for ×, +, etc.)
2 has a well-behaved WFS (for identity types),
3 is compatibly locally cartesian closed (for Π),
4 has a univalent universe (for coherence and univalence)

These requirements basically restrict us to (∞,1)-toposes.

Unfortunately, no one has yet found sufficiently coherent
univalent universes in any (∞,1)-topos other than simplicial
sets (i.e.∞-groupoids).
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