Abstract homotopy theory

Michael Shulman

March 6, 2012

Homotopy theory

Switching gears

Today will be almost all classical mathematics, in set theory or whatever foundation you prefer.

Slogan

Homotopy theory is the study of 1-categories whose objects are not just "set-like" but contain paths and higher paths.

Homotopies and equivalences

Question

What structure on a category C describes a "homotopy theory"?

We expect to have:

A notion of homotopy between morphisms, written *f* ~ *g*. This indicates we have paths *f*(*x*) → *g*(*x*), varying nicely with *x*.

Given this, we can "homotopify" bijections:

Definition

A homotopy equivalence is $f: A \rightarrow B$ such that there exists $g: B \rightarrow A$ with $fg \sim 1_B$ and $gf \sim 1_A$.

Examples

- \mathbf{C} = topological spaces, homotopies $A \times [0, 1] \rightarrow B$.
- **C** = chain complexes, with chain homotopies.
- **C** = categories, with natural isomorphisms.
- $\mathbf{C} = \infty$ -groupoids, with "natural equivalences"

$\infty\text{-}\text{groupoids}$

Definition

Today, an ∞ -groupoid means an algebraic structure:

1 Sets and "source, target" functions:

$$\cdots \rightrightarrows X_n \rightrightarrows \cdots \rightrightarrows X_2 \rightrightarrows X_1 \rightrightarrows X_0$$

- X_0 = objects, X_1 = paths or morphisms, X_2 = 2-paths or 2-morphisms, ...
- 2 Composition/concatenation operations e.g. p: x → y and q: y → z yield p@q: x → z.
- 3 These operations are coherent up to all higher paths.

A topological space Z gives rise to an ∞ -groupoid $\Pi_{\infty}(Z)$.

∞ -functors

There are two ways to define morphisms of ∞ -groupoids:

- **1** strict functors, which preserve all composition operations on the nose.
- weak functors, which preserve operations only up to specified coherent equivalences.

Which should we use?

- We want to include weak functors in the theory.
- But the category of weak functors is ill-behaved: it lacks limits and colimits.
- The category of strict functors is well-behaved, but seems to miss important information.

Cofibrant objects

Theorem

If A is a free ∞ -groupoid, then any weak functor $f : A \rightarrow B$ is equivalent to a strict one.

Proof.

Define $f: A \rightarrow B$ as follows:

- \tilde{f} acts as f on the points of A.
- *f* acts as *f* on the generating paths in *A*. Strictness of *f* then uniquely determines it on the rest.
- \tilde{f} acts as f on the generating 2-paths in A. Strictness then uniquely determines it on the rest.

• ...

Cofibrant replacement

Theorem

Any ∞ -groupoid is equivalent to a free one.

Proof.

Given A, define QA as follows:

- The objects of QA are those of A.
- The paths of *QA* are freely generated by those of *A*.
- The 2-paths of QA are freely generated by those of A.

• . . .

We have $q: QA \rightarrow A$, with a homotopy inverse $A \rightarrow QA$ obtained by sending each path to itself.

However: $QA \rightarrow A$ is a strict functor, but $A \rightarrow QA$ is not!

Weak equivalences

Definition

A left derivable category **C** is one equipped with:

- A class of objects called cofibrant.
- A class of morphisms called weak equivalences such that
 - if two of *f*, *g*, and *gf* are weak equivalences, so is the third.
- Every object A admits a weak equivalence QA → A from a cofibrant one.

Remarks

- A "weak morphism" $A \rightsquigarrow B$ in **C** is a morphism $QA \rightarrow B$.
- In good cases, a weak equivalence between cofibrant objects is a homotopy equivalence.

Some left derivable categories

- 1 ∞ -groupoids with strict functors
 - cofibrant = free
 - weak equivalences = strict functors that have homotopy inverse weak functors.
- 2 chain complexes
 - cofibrant = complex of projectives
 - weak equivalence = homology isomorphism
- 3 topological spaces
 - cofibrant = CW complex
 - weak equivalence = isomorphism on all higher homotopy groups π_n
- 4 topological spaces
 - cofibrant = everything
 - weak equivalence = homotopy equivalence

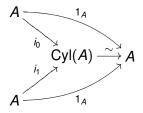
The homotopy theories of ∞ -groupoids and topological spaces (CW complexes) are equivalent, via Π_{∞} .

Cylinder objects

What happened to our "notion of homotopy"?

Definition

A cylinder object for A is a diagram

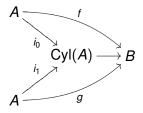


Examples

- In topological spaces, $A \times [0, 1]$.
- In chain complexes, $A \otimes (\mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z})$.
- In ∞ -groupoids, $A \times I$, where I has two isomorphic objects.

Left homotopies

Definition A left homotopy $f \sim g$ is a diagram



for some cylinder object of A.

Remark

For the previous cylinders, this gives the usual notions.

Duality

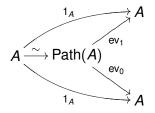
Definition

A right derivable category C is one equipped with:

- A class of objects called fibrant.
- A class of morphisms called weak equivalences, satisfying the 2-out-of-3 property.
- Every object A admits a weak equivalence $A \xrightarrow{\sim} RA$ to a fibrant one.

Path objects

A path object for A is a diagram

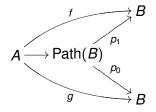


Example

In topological spaces, $Path(A) = A^{[0,1]}$, with ev_0, ev_1 evaluation at the endpoints.

Right homotopies

A right homotopy $f \sim g$ is a diagram



Example

For the previous path object in topological spaces, this is again the usual notion.

Simplicial sets

Definition

A simplicial set *X* is a combinatorial structure of:

- **1** A set X_0 of vertices or 0-simplices
- A set X₁ of paths or 1-simplices, each with assigned source and target vertices
- 3 A set X₂ of 2-simplices with assigned boundaries

4 ...

- A simplicial set X has a geometric realization |X|, a topological space built out of topological simplices Δⁿ according to the data of X.
- A topological spaces Z has a singular simplicial set S_{*}(Z) whose *n*-simplices are maps Δⁿ → Z.

Kan complexes

We can also think of a simplicial set as a model for an $\infty\mathchar`-groupoid via$

```
n-simplices = n-paths
```

but it doesn't have composition operations.

Definition A simplicial set is fibrant (or: a Kan complex) if 1 Every "horn" can be "filled" to a 2-simplex. 2 etc. ...

If *Y* is not fibrant, then there may not be enough maps $X \rightarrow Y$; some of the composite simplices that "should" be there in *Y* are missing.

Homotopy theory of simplicial sets

- Fibrant objects = Kan complexes
- Weak equivalences = maps that induce equivalences of geometric realization

This is also equivalent to ∞ -groupoids.

Diagram categories

Question

If **C** has a homotopy theory, does a functor category \mathbf{C}^{D} have one?

Fact

A natural transformation $\alpha \colon F \to G$ is a natural isomorphism iff each component α_x is an isomorphism.

Definition

A weak equivalence in \mathbf{C}^{D} is a natural transformation such that each component is a weak equivalence in \mathbf{C} .

Homotopy natural transformations

Question

If $\alpha : F \to G$ has each component α_x a *homotopy* equivalence, is α a homotopy equivalence?

Let $\beta_x : Gx \to Fx$ be a homotopy inverse to α_x . Then for $f : x \to y$,

$$\beta_{y} \circ G(f) \sim \beta_{y} \circ G(f) \circ \alpha_{x} \circ \beta_{x}$$
$$= \beta_{y} \circ \alpha_{y} \circ F(f) \circ \beta_{x}$$
$$\sim F(f) \circ \beta_{x}$$

So β is only a natural transformation "up to homotopy".

Conclusion: the "weak morphisms" of functors should include "homotopy-natural transformations".

Fibrant diagrams

Question

For what sort of functor *G* is every homotopy-natural transformation $F \rightarrow G$ equivalent to a strictly natural one?

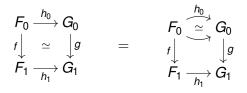
Consider $D = (0 \rightarrow 1)$, so \mathbf{C}^{D} is the category of arrows in \mathbf{C} .

Fibrations

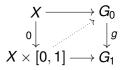
Theorem

For $g \colon G_0 \to G_1$ in spaces, the following are equivalent.

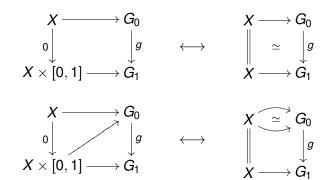
1 Every homotopy commutative square into g is homotopic to a commutative one with the bottom map fixed:



2 g is a fibration:

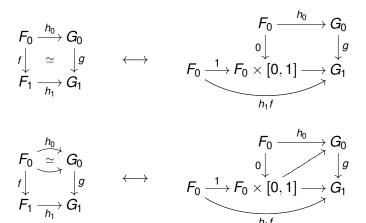


Proof: $1 \Rightarrow 2$



Proof: $2 \Rightarrow 1$

h₁f



Fibrations and cofibrations

Conclusions

- Fibrations can be the fibrant objects in the category of arrows.
- Similarly, cofibrations (defined dually) can be the cofibrant objects.
- A "category with homotopy theory" should have notions of fibration and cofibration.
- And maybe more stuff, for diagrams **C**^D other than arrows?
- This is starting to look like a mess!

Lifting properties

Definition Given $i: X \to Y$ and $q: B \to A$ in a category, we say $i \boxtimes q$ if any

commutative square

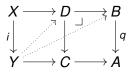
admits a dotted filler.

- $\mathcal{I}^{\boxtimes} = \{ q \mid i \boxtimes q \quad \forall i \in \mathcal{I} \}$
- $\[\[\mathcal{Q} \] = \{ i \mid i \[\mathcal{Q} \] \forall q \in \mathcal{Q} \} \]$
- fibrations = $\{X \rightarrow X \times [0, 1]\}^{\square}$

Closure properties of lifting properties

Lemma If $i \square q$, then $i \square$ (any pullback of q).

Proof.



- Similarly, (any pushout of *i*) $\Box q$.
- Also closed under retracts.

Weak factorization systems

Definition

A weak factorization system in a category is $(\mathcal{I}, \mathcal{Q})$ such that

$$1 \mathcal{I} = {}^{\square}\mathcal{Q} \text{ and } \mathcal{Q} = \mathcal{I}^{\square}.$$

2 Every morphism factors as $q \circ i$ for some $q \in Q$ and $i \in I$.

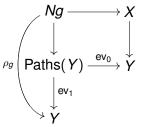
Examples

- in sets, $\mathcal{I} =$ surjections, $\mathcal{Q} =$ injections.
- in sets, $\mathcal{I} = injections$, $\mathcal{Q} = surjections$.

The mapping path space

Definition

Given $g: X \to Y$ in topological spaces, its mapping path space is the pullback



$$Ng = \{ (x, y, \alpha) \mid x \in X, y \in Y, \alpha \colon g(x) \rightsquigarrow y \}$$

and $\rho_g(x, y, \alpha) = y$.

Acyclic cofibrations

Facts

- $\rho_g \colon Ng \to Y$ is a fibration.
- The map $\lambda_g \colon X \to Ng$ defined by $x \mapsto (x, g(x), c_{g(x)})$ is a cofibration and a homotopy equivalence.
- The composite $X \xrightarrow{\lambda_g} Ng \xrightarrow{\rho_g} Y$ is g.
- [□](fibrations) = (cofibrations) ∩ (homotopy equivalences)

Definition

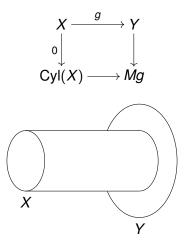
An acyclic cofibration is a cofibration that is also a homotopy equivalence.

Theorem

(acyclic cofibrations, fibrations) is a weak factorization system.

Mapping cylinders

Given $g: X \rightarrow Y$, its mapping cylinder is the pushout



Acyclic fibrations

Facts

- $X \rightarrow Mg$ is a cofibration
- $Mg \rightarrow Y$ is a fibration and a homotopy equivalence.
- The composite $X \rightarrow Mg \rightarrow Y$ is g.
- (cofibrations)[□] = (fibrations) ∩ (homotopy equivalences)

Definition

An acyclic fibration is a fibration that is also a homotopy equivalence.

Theorem

(cofibrations, acyclic fibrations) is a weak factorization system.

Model categories

Definition (Quillen)

A model category is a category **C** with limits and colimits and three classes of maps:

- C = cofibrations
- $\mathcal{F} = fibrations$
- W = weak equivalences

such that

- 1 \mathcal{W} has the 2-out-of-3 property.
- **2** $(\mathcal{C} \cap \mathcal{W}, \mathcal{F})$ and $(\mathcal{C}, \mathcal{F} \cap \mathcal{W})$ are weak factorization systems.

Not all "categories with homotopy" are model categories, but very many are. When it exists, a model category is a very convenient framework.

Homotopy theory in a model category

- *X* is cofibrant if $\emptyset \to X$ is a cofibration.
- Y is fibrant if $Y \rightarrow 1$ is a fibration.
- For any X, we have Ø → QX → X with QX cofibrant and QX → X an acyclic fibration (hence a weak equivalence).
- For any *Y*, we have $Y \rightarrow RY \rightarrow 1$ with *RX* fibrant and $Y \rightarrow RY$ an acyclic cofibration.
- Any X has a very good cylinder object

$$X + X \xrightarrow{\text{cof.}} \text{Cyl}(X) \xrightarrow{\text{acyc. fib.}} X$$

Any Y has a very good path object

$$Y \xrightarrow{\text{acyc. cof.}} \text{Paths}(Y) \xrightarrow{\text{fib.}} Y \times Y$$

Homotopy theory in a model category

Let X and Y be fibrant-and-cofibrant in a model category C.

- Left and right homotopy agree for maps $X \rightarrow Y$.
- Homotopy is an equivalence relation on maps $X \rightarrow Y$.
- A map X → Y is a weak equivalence iff it is a homotopy equivalence.
- In good cases, every functor category C^D is also a model category.

Some model categories

Example

Topological spaces, with

- Fibrations as before
- Cofibrations defined dually
- Weak equivalences = homotopy equivalences

Example

Topological spaces, with

- Fibrations as before
- Cofibrations = homotopy equivalent to rel. cell complexes
- Weak equivalences = maps inducing isos on all π_n

The second one is equivalent to ∞ -groupoids.

Some model categories

Example

Chain complexes, with

- Fibrations = degreewise-split surjections
- Cofibrations = degreewise-split injections
- Weak equivalences = chain homotopy equivalences

Example

Chain complexes, with

- Fibrations = degreewise surjections
- Cofibrations = degreewise-split injections with projective cokernel
- Weak equivalences = maps inducing isos on all H_n

Some model categories

Example

Small categories (or groupoids), with

- Fibrations = functors that lift isomorphisms
- Cofibrations = injective on objects
- Weak equivalences = equivalences of categories

Example

Any category, with

- Fibrations = all maps
- Cofibrations = all maps
- Weak equivalences = isomorphisms

Simplicial sets

Example

Simplicial sets, with

- Fibrations = Kan fibrations
- Cofibrations = monomorphisms
- Weak equivalences = geometric realization equivalences.

This is unreasonably well-behaved in many ways.

Display map categories

Recall

A display map category is a category with

- A terminal object.
- A subclass of its morphisms called the display maps, denoted B → A or B → A.
- Any pullback of a display map exists and is a display map.

Note: The right class of any weak factorization system can be a class of display maps.

Identity types in d.m. categories

The dependent identity type

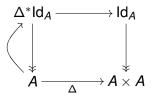
$$x : A, y : A \vdash (x = y)$$
: Type

must be a display map

Identity types in d.m. categories The reflexivity constructor

$$x: A \vdash \operatorname{refl}(x): (x = x)$$

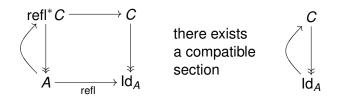
must be a section



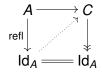
or equivalently a lifting

Identity types in d.m. categories

The eliminator says given a dependent type with a section

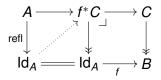


In other words, we have the lifting property



Identity types in d.m. categories

In fact, refl \square all display maps.



Conclusion Identity types factor $\Delta : A \rightarrow A \times A$ as

$$A \xrightarrow{\mathsf{refl}} \mathsf{Id}_A \xrightarrow{q} A \times A$$

where *q* is a display map and refl \square (display maps).

General factorizations

Theorem (Gambino–Garner)

In a display map category that models identity types, any morphism $g \colon A \to B$ factors as

$$A \stackrel{i}{\longrightarrow} Ng \stackrel{q}{\longrightarrow} B$$

where q is a display map, and i \square all display maps.

$$Ng = \llbracket y \colon B, x \colon A, p \colon (g(x) = y) \rrbracket$$

is the type-theoretic mapping path space.

Corollary

- $\mathcal{I} = \Box$ (display maps)
- $\mathcal{Q} = \mathcal{I}^{\boxtimes}$

is a weak factorization system.

Modeling identity types

Theorem (Awodey–Warren,Garner–van den Berg) In a display map category, if

 $(^{\square}(display maps), (^{\square}(display maps))^{\square})$

is a well-behaved weak factorization system, then the category models identity types.

 $\begin{array}{rcl} \mbox{products} & \longleftrightarrow & \mbox{categorical products} \\ \mbox{disjoint unions} & \longleftrightarrow & \mbox{categorical coproducts} \\ & \vdots \\ \mbox{identity types} & \longleftrightarrow & \mbox{weak factorization systems} \end{array}$

Type theory of homotopy theory

The model category of simplicial sets is well-behaved.

Conclusion We can prove things about ordinary homotopy theory by reasoning inside homotopy type theory. (The complete theory of simplicial sets).

Interpreted in ordinary homotopy theory,

- Function extensionality holds.
- The univalence axiom holds (Voevodsky).
- A space A is *n*-truncated just when $\pi_k(A) = 0$ for k > n.
- An equivalence is a classical (weak) homotopy equivalence.

Other homotopy theories

To model homotopy type theory, we need a category that

- 1 has finite limits and colimits (for \times , +, etc.)
- 2 has a well-behaved WFS (for identity types),
- 3 is compatibly locally cartesian closed (for Π),
- 4 has a univalent universe (for coherence and univalence)

These requirements basically restrict us to $(\infty, 1)$ -toposes.

Unfortunately, no one has yet found *sufficiently coherent* univalent universes in any $(\infty, 1)$ -topos other than simplicial sets (i.e. ∞ -groupoids).