
Higher inductive types

Michael Shulman

March 13, 2012

1 / 43

Higher inductive types

Idea

• Inductive types are a good way to build sets: we specify
the elements of a set by giving constructors.

• To build a space (or∞-groupoid), we need to specify not
only elements, but paths and higher paths.

• Is there an analogous notion of higher inductive type?

Inductive circle : Type :=
| base : circle
| loop : (base = base).

Can we make sense of this?

3 / 43

The circle

S1 : Type

base : S1 loop : (base = base)

C : Type b : C ` : (b = b)

match(b, `) : S1 → C

...
match(b, `)(base)→β b

...
map(match(b, `), loop)→β `

4 / 43

The circle

S1 : Type

base : S1 loop : (base = base)

????

match(b, `) :
∏

x : S1 P(x)

...
match(b, `)(base)→β b

...
map(match(b, `), loop)→β `

4 / 43

Dependent loops
As hypotheses of the dependent eliminator for S1, we need

1 A point b : P(base).
2 A path ` from b to b lying over “loop”.

P

S1

base

loop

b

`

`′

` : (b = b)

b

` : (transport(loop,b) = b)`′ : (transport(loop,b) = b)

5 / 43

Dependent loops
As hypotheses of the dependent eliminator for S1, we need

1 A point b : P(base).
2 A path ` from b to b lying over “loop”.

P

S1

base

loop

b

`

`′

` : (b = b)

b

` : (transport(loop,b) = b)`′ : (transport(loop,b) = b)

5 / 43

Dependent loops
As hypotheses of the dependent eliminator for S1, we need

1 A point b : P(base).
2 A path ` from b to b lying over “loop”.

P

S1

base

loop

b

` `′

` : (b = b)

b

` : (transport(loop,b) = b)`′ : (transport(loop,b) = b)

5 / 43

Dependent loops
As hypotheses of the dependent eliminator for S1, we need

1 A point b : P(base).
2 A path ` from b to b lying over “loop”.

P

S1

base

loop

b

` `′

` : (b = b)

b

` : (transport(loop,b) = b)

`′ : (transport(loop,b) = b)

5 / 43

Dependent loops
As hypotheses of the dependent eliminator for S1, we need

1 A point b : P(base).
2 A path ` from b to b lying over “loop”.

P

S1

base

loop

b

` `′

` : (b = b)

b

` : (transport(loop,b) = b)

`′ : (transport(loop,b) = b)

5 / 43

The dependent eliminator

x : S1 ` P(x) : Type
` b : P(base) ` ` : (transport(loop,b) = b)

match(b, `) :
∏

x : S1 P(x)

...
match(b, `)(base)→β b

...
map(match(b, `), loop)→β `

6 / 43

Computation rules

• The computation rules for ordinary inductive types are
definitional: they actually compute.

• To obtain rules like that for HITs would require modifying
the Coq source code. As “axioms” we can only assert
propositional “computation” rules, e.g. that(

match(b, `)(base) = b
)

is inhabited.

8 / 43

Computation rules
Even in theory, definitional computation rules for
path-constructors like “loop” are a bit questionable.

map(match(b, `), loop)→β `

• The operation “map” has many distinct (but equivalent)
definitions. A definitional computation rule would single
one out arbitrarily.

• Gets worse in higher dimensions, where we need many
more complicated versions of “map”.

• So far, the only way we have to construct set-theoretic
models of HITs produces only propositional computation
rules for path-constructors (but definitional rules for
point-constructors like “base”).

• We don’t know of any application that requires a
definitional computation rule for path-constructors.

9 / 43

The Interval

Inductive interval : Type :=
| zero : interval
| one : interval
| segment : (zero = one).

• Unsurprisingly, this type is provably contractible.
• But surprisingly, it is not useless. If it has definitional

computation for its point-constructors zero and one, then it
implies function extensionality.

10 / 43

The 2-sphere

Inductive sphere : Type :=
| base2 : sphere
| loop2 : (refl base2 = refl base2).

OR:

Inductive sphere : Type :=
| northpole : sphere
| southpole : sphere
| greenwich : (northpole = southpole)
| dateline : (northpole = southpole)
| east : (greenwich = dateline)
| west : (greenwich = dateline).

etc. . .

11 / 43

The torus

Inductive torus : Type :=
| pt : torus
| p : (pt = pt)
| q : (pt = pt)
| surf : (p @ q == q @ p).

pt pt

pt pt

p

p

q qsurf

12 / 43

Cylinders
Inductive cyl (A:Type) : Type :=
| top : A -> cyl A
| bot : A -> cyl A
| seg : forall (a:A), (top a = bot a).

top(a)

bot(a)

seg(a)

13 / 43

Suspension
Inductive susp (A:Type) : Type :=
| north : susp A
| south : susp A
| mer : A -> (north = south).

north

south

mer(a)

14 / 43

Higher spheres

Fixpoint sphere (n:nat) : Type :=
match n with
| 0 => unit + unit
| S n’ => susp (sphere n’)

end.

. . .

15 / 43

Nontriviality

Theorem
The type S1 is contractible ⇐⇒ all types are h-sets.

Proof.
⇐: If S1 is an h-set, then loop = refl(base).

⇒: Any path p : (x = x) is the image of “loop” in S1 under a
map S1 → X , so if loop = refl(base) then p = refl(x).

HITs by themselves don’t guarantee the homotopy theory is
nontrivial. We need something else, like univalence.

17 / 43

π1(S1) ∼= Z, classically

π1(S1) ∼= Z

How do we prove this classically?

1 Consider the winding map R→ S1.
2 This is the universal cover of S1.
3 Thus, its fiber over a point, namely Z, is π1(S1).

18 / 43

The universal cover of S1

R

S1

base

0

1

2

19 / 43

π1(S1) ∼= Z, homotopically

π1(S1) ∼= Z

A more homotopy-theoretic way to phrase the classical proof:

1 We have a fibration p : R→ S1 with fiber Z.
2 R is contractible, so the fiber of p is equivalent to the

homotopy fiber of ∗ → S1.
3 For any X , the homotopy fiber of ∗ → X is the loop space

ΩX = {γ : x0 x0}

4 Thus ΩS1 ∼= Z, and in particular π1(S1) ∼= Z.

20 / 43

π1(S1) ∼= Z, type-theoretically
How can we build the fibration R� S1 in type theory?
• A fibration over S1 is a dependent type R : S1 → Type.
• By the eliminator for S1, a function R : S1 → Type is

determined by
• A point B : Type and
• A path ` : (B = B).

• By univalence, ` is a homotopy equivalence B ' B.
Thus we can take B = Z and ` to be “+1”.

The rest of the proof is just the same!

Remarks

• That isn’t to say it’s easy to formalize it all in type theory!
• What we get is ΩS1 ∼= Z, which is classically stronger than
π1(S1) ∼= Z. Here, we don’t yet have a definition of π1.

21 / 43

Work in progress

• Extend this to classifying spaces of other discrete groups.
• Prove the Freudenthal suspension theorem and conclude

that πn(Sn) ∼= Z.
• Construct the Hopf fibration S3 � S2

• Construct the long exact sequence of a fibration and
conclude that π3(S2) ∼= Z.

• Construct the Serre spectral sequence.
• . . .

22 / 43

Supports

Recall: A is (−1)-truncated, or an h-prop, if∏
x ,y : A

(x = y).

The support of A, denoted supp(A), is supposed to be:
• an h-prop that contains a point precisely when A does.
• a reflection of A into h-props.

24 / 43

Support as an HIT
Peter Lumsdaine realized we could define:

Inductive supp (A:Type) : Type :=
| inhab : A -> supp A
| inhabpath : forall (x y:supp A), (x = y).

A : Type
supp(A) : Type

x : A
inhab(x) : supp(A)

x : A y : A
inhabpath(x , y) : (x = y)

C : Type x : A ` i(x) : C x : C, y : C ` p : (x = y)

match(i ,p) : supp(A)→ C

25 / 43

The rest of logic

P and Q ←→ P ×Q

P implies Q ←→ P → Q

> (true) ←→ unit

⊥ (false) ←→ ∅
(∀x : A)P(x) ←→

∏
x : A B(x)

P or Q ←→ supp(P + Q)

(∃x : A)P(x) ←→ supp(
∑

x : A B(x))

26 / 43

0-truncation

Recall: A is an h-set if ∏
x,y : A

p,q : (x=y)

(p = q)

Inductive pi0 (A:Type) : Type :=
| component : A -> pi0 A
| pi0path : forall (x y:pi0 A) (p q:x=y), (p=q).

• Can now define π1(A) := π0(ΩA)

• And so on . . .

27 / 43

Truncation: summary

• Because we were (magically) able to characterize h-props,
h-sets, etc. only using equality types, we can use
path-constructors in HITs to “universally force” a type to be
an h-prop, an h-set, etc.

• Because “being an h-prop” is itself an h-prop, the
path-constructors that force an HIT to be an h-prop have
no other effect (give no extra data).

• We can do the same thing with equivalences!

28 / 43

Localization

Given f : A→ B.

Definition

• Z is f -local if Map(B,Z)
f∗−→ Map(A,Z) is an equivalence.

• An f -localization of X is a reflection of X into f -local
spaces.

Examples

• If f is Sn → Dn+1, then f -local means (n − 1)-truncated.

• Using S1 ×p−−→ S1 for a prime p, we can build “localization of
spaces at p”.

29 / 43

Adjoint equivalences

Recall: f : A→ B is an adjoint equivalence if we have
• A map g : B → A
• A homotopy r :

∏
a : A(g(f (a)) = a)

• A homotopy s :
∏

b : B(f (g(b)) = b)

• A 2-homotopy
∏

a : A(s(f (a)) = map(f , r(a)))

The type isAdjointEquiv(f) of such data is always an h-prop.

30 / 43

Localization as a HIT

Inductive localize {A B:Type} {f:A->B}
(X:Type) : Type :=

| to_local : X -> localize X
| linv : (A -> localize X) -> B -> localize X
| lsec : forall (g:A -> localize X) (a:A),

(linv g (f a) = g a)
| lret : forall (h:B -> localize X) (b:B),

(linv (h o f) b = h b)
| ltri : forall (h:B -> localize X) (a:A),

(lsec (h o f) a = lret h (f a)).

linv gives Map(A,Z)→ Map(B,Z), and the other constructors
make it an adjoint inverse to f ∗.

31 / 43

The other factorization

Recall:
• A model category has two weak factorization systems:

(acyclic cofibrations, fibrations)
(cofibrations, acyclic fibrations)

• With identity types, we have the first WFS using the
mapping path space:

A→ Jy : B, x : A, p : (g(x) = y)K→ B

• In topology, the second WFS uses the mapping cylinder.

33 / 43

Mapping cylinders

B

A

Inductive mcyl {A B:Type} (f:A->B) : Type :=
| inl : A -> mcyl f
| inr : B -> mcyl f
| glue : forall (a:A), (inl a = inr (f a)).

Does this give us the other WFS in type theory?

34 / 43

Acyclic fibrations

What is an acyclic fibration in type theory?
1 A fibration that is also an equivalence.
2 A fibration p : B � A which admits a section s : A→ B

(hence ps = 1A) such that sp ∼ 1B.
3 A dependent type B : A→ Type such that each B(a) is

contractible.

35 / 43

Cofibrations

What is a cofibration in type theory?

Actually, what is an acyclic cofibration in type theory?

When does i : A→ B satisfy i � p for any fibration p?

36 / 43

Acyclic cofibrations
Theorem (Gambino-Garner)
If B is an inductive type and i is its only constructor, then i � p
for any fibration p.

A
f //

i
��

Y
p

����

B g
//

?
??

X
Proof.

• p is a dependent type Y : X → Type; we want to define

h :
∏
b : B

Y (g(b))

• By induction, it suffices to specify h(b) when b = i(a).
• But then we can take h(i(a)) := f (a).

37 / 43

Path object factorizations

Example
refl : A→ IdA is the only constructor of the identity type. Thus,

A refl−−→ IdA � A× A

is an (acyclic cofibration, fibration) factorization.

38 / 43

Some cofibrations

Theorem
If B is an inductive type and i : A→ B is one of its constructors,
then i � p for any acyclic fibration p.

A
f //

i
��

Y
p

����

B g
//

?
??

X

Proof.

• Now we have a section s :
∏

x : x Y (x).
• We define h :

∏
b : B Y (g(b)) by induction on B:

• If b = i(a), take h(b) := f (a).
• If b is some other constructor, take h(b) := s(g(b)).

39 / 43

More cofibrations
Theorem
If B is a higher inductive type and i : A→ B is one of its
point-constructors, then i � p for any acyclic fibration p.

A
f //

i
��

Y
p

����

B g
//

?
??

X

Proof.

• Now we have a section s :
∏

x : x Y (x).
• We define h :

∏
b : B Y (g(b)) by induction on B:

• If b = i(a), take h(b) := f (a).
• If b is some other point-constructor, take h(b) := s(g(b)).
• In the case of path-constructors, use the contractibility of

the fibers of p.

40 / 43

Cell complexes

In homotopy theory, i : A→ B is a relative cell complex if B is
obtained from A by successively “gluing on disks along their
boundaries”. ∐

Sn−1 //

��

∐
Dn

��

A // B1

_�

// . . . // B

These are cofibrations, for the same reason as in type theory.

fibrations ←→ dependent types
cofibrations ←→ inductive constructors

41 / 43

The other factorization

We need a mapping cylinder for f : A→ B that is dependent
over B.

Inductive mcyl {A B:Type} (f:A->B) : B -> Type :=
| inr : forall (b:B), mcyl f b
| inl : forall (a:A), mcyl f (f a)
| glue : forall (a:A), (inl a = inr (f a)).

Theorem (Lumsdaine)

1 inl : A→ Jmcyl(f)K is a cofibration.
2 Jmcyl(f)K� B is an acyclic fibration.
3 With HITs, the syntactic category is a model category

(except for limits and colimits), in which all objects are
fibrant and cofibrant.

42 / 43

Categorical models

Recall that a category which
1 admits finite limits and colimits
2 has a well-behaved WFS,
3 is compatibly locally cartesian closed, and
4 has a univalent universe

models homotopy type theory.

Theorem (Lumsdaine–Shulman)
If such a category is “locally presentable” and its WFS underlies
a nice model structure, then it models all higher inductive types.
(In particular, classical homotopy theory via simplicial sets.)

43 / 43

