Higher inductive types

Michael Shulman

March 13, 2012

/43

Higher inductive types

ldea
¢ Inductive types are a good way to build sets: we specify
the elements of a set by giving constructors.
e To build a space (or co-groupoid), we need to specify not
only elements, but paths and higher paths.
e Is there an analogous notion of higher inductive type?

Inductive circle : Type :=
| base : circle
| loop : (base = base).

Can we make sense of this?

/43

The circle

S': Type

base: S' loop: (base = base)

C: Type b: C ¢ (b=Db)
match(b,?): S' — C

match(b, ¢)(base) —3 b map(match(b, £),loop) —z ¢

The circle

S': Type

base: S' loop: (base = base)

777
match(b, ?): [],. gt P(x)

Dependent loops
As hypotheses of the dependent eliminator for S, we need

© A point b: P(base).
® A path ¢ from b to b lying over “loop”.

I

base

Dependent loops
As hypotheses of the dependent eliminator for S, we need

© A point b: P(base).
® A path ¢ from b to b lying over “loop”.

i

base

Dependent loops
As hypotheses of the dependent eliminator for S, we need

© A point b: P(base).
® A path ¢ from b to b lying over “loop”.

T

>

¢: (b= b)

base

Dependent loops
As hypotheses of the dependent eliminator for S, we need

© A point b: P(base).
® A path ¢ from b to b lying over “loop”.

T

¢: (transport(loop, b) = b)

base

Dependent loops
As hypotheses of the dependent eliminator for S, we need

© A point b: P(base).
® A path ¢ from b to b lying over “loop”.

T

base

The dependent eliminator

x: S'F P(x): Type
F b: P(base) - ¢: (transport(loop, b) = b)
match(b, ¢): [],. gt P(x)

match(b, ¢)(base) —3 b map(match(b, £),loop) —z ¢

Computation rules

e The computation rules for ordinary inductive types are
definitional: they actually compute.

e To obtain rules like that for HITs would require modifying
the Coq source code. As “axioms” we can only assert
propositional “computation” rules, e.g. that

(match(b, l)(base) = b)

is inhabited.

Computation rules

Even in theory, definitional computation rules for
path-constructors like “loop” are a bit questionable.

map(match(b, £),loop) —z ¢

e The operation “map” has many distinct (but equivalent)
definitions. A definitional computation rule would single
one out arbitrarily.

o Gets worse in higher dimensions, where we need many
more complicated versions of “map”.
¢ So far, the only way we have to construct set-theoretic
models of HITs produces only propositional computation
rules for path-constructors (but definitional rules for
point-constructors like “base”).

e We don’t know of any application that requires a
definitional computation rule for path-constructors.

43

The Interval

Inductive interval : Type :=
| zero : interval

| one : interval

| segment : (zero = one).

e Unsurprisingly, this type is provably contractible.

e But surprisingly, it is not useless. If it has definitional
computation for its point-constructors zero and one, then it
implies function extensionality.

10/43

The 2-sphere

Inductive sphere : Type :=

| base2 : sphere

| loop2 : (refl base2 = refl base2).
OR:

Inductive sphere : Type :=

| northpole : sphere

| southpole : sphere

| greenwich : (northpole = southpole)
| dateline : (northpole = southpole)
| east : (greenwich = dateline)

| west : (greenwich = dateline).

etc...

11/43

Inductive torus : Type :

| pt : torus

| p ¢ (pt = pt)

| g : (pt = pt)

| surf : (p @ g == g @ p).
pt P
q surf
pt D

The torus

pt

pt

12/43

Cylinders

Inductive cyl (A:Type) : Type :=

| top : A —> cyl A

| bot : A -> cyl A

| seg : forall (a:A), (top a = bot a).

N
_top(a)

seg(a)

DN

bot(a)

13/43

Suspension

Inductive susp (A:Type) : Type :=
| north : susp A

| south : susp A

| mer : A —> (north = south).

north

south

14/43

Higher spheres

Fixpoint sphere (n:nat) : Type :=
match n with
| 0 => unit + unit

| S n’ => susp (sphere n’)
end.

15/43

Nontriviality

Theorem
The type S is contractible < all types are h-sets.

Proof.
«<: If S' is an h-set, then loop = refl(base).

= Any path p: (x = x) is the image of “loop” in S' under a
map S' — X, so if loop = refl(base) then p = refl(x). O

HITs by themselves don’t guarantee the homotopy theory is
nontrivial. We need something else, like univalence.

17/43

m(S") = Z, classically

7T1(S1) =7

How do we prove this classically?

© Consider the winding map R — S'.
® This is the universal cover of S'.
@® Thus, its fiber over a point, namely Z, is 71(S").

18/43

The universal cover of S!

UK

U

base

19/43

71(S') = Z, homotopically

m(S") =7

A more homotopy-theoretic way to phrase the classical proof:

© We have a fibration p: R — S with fiber Z.

® R is contractible, so the fiber of p is equivalent to the
homotopy fiber of + — S'.

® For any X, the homotopy fiber of x — X is the loop space
QX = {'y: Xo ~ Xo}

@ Thus QS' = 7, and in particular 71(S') = Z.

20/43

m(S") = Z, type-theoretically
How can we build the fibration R — S' in type theory?

« A fibration over S' is a dependent type R: S' — Type.
e By the eliminator for S', a function R: S' — Type is
determined by
e A point B: Type and
e Apath?¢: (B = B).

e By univalence, /¢ is a homotopy equivalence B ~ B.
Thus we can take B = Z and / to be “+1”.

The rest of the proof is just the same!
Remarks

e Thatisn’t to say it's easy to formalize it all in type theory!

« What we get is QS' = Z, which is classically stronger than
71(S') = Z. Here, we don’t yet have a definition of 4.

21/43

Work in progress

Extend this to classifying spaces of other discrete groups.

Prove the Freudenthal suspension theorem and conclude
that 7Tn(Sn) = 7.
Construct the Hopf fibration S — S2

Construct the long exact sequence of a fibration and
conclude that m3(S?) = Z.

Construct the Serre spectral sequence.

22/43

Supports

Recall: Ais (—1)-truncated, or an h-prop, if

The support of A, denoted supp(A), is supposed to be:
¢ an h-prop that contains a point precisely when A does.
« a reflection of A into h-props.

24/43

Support as an HIT

Peter Lumsdaine realized we could define:

Inductive supp (A:Type) : Type :=
| inhab : A -> supp A
| inhabpath : forall (x y:supp A), (x =vy).

A: Type
supp(A): Type

X: A xX: A y: A
inhab(x): supp(A) inhabpath(x, y): (x =y)

C: Type x: Ak i(x): C x:C,y:Ckp:(x=y)
match(i, p): supp(A) — C

25/43

Pand Q
P implies Q
T (true)
1 (false)
(Vx: A)P(x)

PorQ
(Ix: A)P(x)

11111

1]

The rest of logic

PxQ
P—Q
unit

0

[1x. aB(x)

supp(P + Q)
SUpPP(2_x: 4 B(X))

26/43

O-truncation

Recall: Ais an h-set if

II k=9

p,q: (x=y)

Inductive pi0 (A:Type) : Type :=
| component : A -> pi0 A
| piOpath : forall (x y:pi0 A) (p g:x=y), (p=9).

e Can now define 71 (A) = m(QA)
e Andsoon...

27/43

Truncation: summary

e Because we were (magically) able to characterize h-props,
h-sets, etc. only using equality types, we can use
path-constructors in HITs to “universally force” a type to be
an h-prop, an h-set, etc.

e Because “being an h-prop” is itself an h-prop, the
path-constructors that force an HIT to be an h-prop have
no other effect (give no extra data).

e We can do the same thing with equivalences!

28/43

Localization

Given f: A— B.
Definition
e Zis f-local if Map(B, Z) r, Map(A, Z) is an equivalence.

e An f-localization of X is a reflection of X into f-local
spaces.

Examples

o If fis S" — D", then f-local means (n — 1)-truncated.

e Using S' =& S for a prime p, we can build “localization of
spaces at p”.

29/43

Adjoint equivalences

Recall: f: A— Bis an adjoint equivalence if we have
e Amapg: B— A
e A homotopy r: [[,. a(g
e A homotopy s: [],. g(f
e A 2-homotopy [],. a(s(

—~
~h
—~
Y
—
~
I
Q
~

The type isAdjointEquiv(f) of such data is always an h-prop.

30/43

Localization as a HIT

Inductive localize {A B:Type} {f:A->B}

(X:Type) : Type :=
| to_local : X —> localize X
| linv : (A -> localize X) -> B -> localize X
| lsec : forall (g:A —-> localize X) (a:A),
(linv g (f a) = g a)

| lret : forall (h:B —-> localize X) (b:B),
(linv (h o £f) b = h b)

| ltri : forall (h:B —-> localize X) (a:Ad),
(lsec (h o £f) a = 1lret h (f a)).

linv gives Map(A, Z) — Map(B, Z), and the other constructors
make it an adjoint inverse to f*.

31/43

The other factorization

Recall:
e A model category has two weak factorization systems:

(acyclic cofibrations, fibrations)
(cofibrations, acyclic fibrations)

o With identity types, we have the first WFS using the
mapping path space:

A-y:B x: A p:(gx)=y)] - B

¢ In topology, the second WFS uses the mapping cylinder.

33/43

Mapping cylinders

A
B
Inductive mcyl {A B:Type} (f:A->B) : Type :=
| inl : A -> mcyl f
| inr : B -> mcyl £
| glue : forall (a:A), (inl a = inr (f a)).

Does this give us the other WFS in type theory?

34/43

Acyclic fibrations

What is an acyclic fibration in type theory?
© A fibration that is also an equivalence.

® A fibration p: B — A which admits a sections: A— B
(hence ps = 1,4) such that sp ~ 1.

©® A dependent type B: A — Type such that each B(a) is
contractible.

35/43

Cofibrations

What is a cofibration in type theory?
Actually, what is an acyclic cofibration in type theory?

When does i: A — B satisfy i 1 p for any fibration p?

36/43

Acyclic cofibrations
Theorem (Gambino-Garner)

If B is an inductive type and i is its only constructor, then i p

for any fibration p. ;
A—Y

BT X
Proof.

e pis adependent type Y: X — Type; we want to define

h: 11 Y(a(v))
b: B

e By induction, it suffices to specify h(b) when b = i(a).
e But then we can take h(i(a)) = f(a).

D 37/43

Path object factorizations

Example
refl: A — ld, is the only constructor of the identity type. Thus,

A d, - Ax A

is an (acyclic cofibration, fibration) factorization.

38/43

Some cofibrations

Theorem

If B is an inductive type and i: A — B is one of its constructors,
then i 1 p for any acyclic fibration p.
A—1
? 7777(

Y
,i l”
Proof.

e Now we have a section s: [],., Y(x).

e We define h: [],. g Y(g(b)) by induction on B:
o If b=i(a), take h(b) = f(a).
e If bis some other constructor, take h(b) := s(g(b)).

39/43

More cofibrations

Theorem
If B is a higher inductive type and i: A — B is one of its

point-constructors, then i iz p for any acyclic fibration p.

Aoy

BT> X
Proof.

e Now we have a section s: [],., Y(x).
o We define h: [],. g Y(g(b)) by induction on B:
o If b= i(a), take h(b) = f(a).
o If bis some other point-constructor, take h(b) = s(g(b)).

¢ In the case of path-constructors, use the contractibility of
the fibers of p.

40/43

Cell complexes

In homotopy theory, i: A — B is a relative cell complex if B is
obtained from A by successively “gluing on disks along their
boundaries”.

Hsn—1 4)HDn

Il

A B, .. ——B

These are cofibrations, for the same reason as in type theory.

fibrations <+— dependent types
cofibrations +— inductive constructors

41/43

The other factorization

We need a mapping cylinder for f: A — B that is dependent
over B.

Inductive mcyl {A B:Type} (f:A->B)
| inr : forall (b:B), mcyl f b
| inl : forall (a:A), mcyl £ (f a)

| glue : forall (a:A), (inl a = inr (f a)).

: B > Type :=

Theorem (Lumsdaine)

@ inl: A— [meyl(f)] is a cofibration.
® [mcyl(f)] — B is an acyclic fibration.

® With HITs, the syntactic category is a model category

(except for limits and colimits), in which all objects are
fibrant and cofibrant.

42/43

Categorical models

Recall that a category which
@ admits finite limits and colimits
® has a well-behaved WFS,
® is compatibly locally cartesian closed, and
O has a univalent universe
models homotopy type theory.

Theorem (Lumsdaine—Shulman)

If such a category is “locally presentable” and its WFS underlies
a nice model structure, then it models all higher inductive types.

(In particular, classical homotopy theory via simplicial sets.)

43/43

