The additivity and multiplicativity of fixed-point invariants

Mike Shulman ${ }^{1}$ Kate Ponto ${ }^{2}$
${ }^{1}$ University of California, San Diego
San Diego, California
${ }^{2}$ University of Kentucky
Lexington, Kentucky
University of Glasgow
18 April 2012

(1) Additivity and multiplicativity theorems
(2) Traces
(3) Bicategorical trace
(4) Additivity and multiplicativity formulas

Let M be a manifold, $f: M \rightarrow M$ continuous.

Question

What is a good invariant of f that tells us about its fixed points?

Let M be a manifold, $f: M \rightarrow M$ continuous.

Question

What is a good invariant of f that tells us about its fixed points?

First try

$F P(f)=$ the number of fixed points of f.

Let M be a manifold, $f: M \rightarrow M$ continuous.

Question

What is a good invariant of f that tells us about its fixed points?

First try

$F P(f)=$ the number of fixed points of f.
Problems with this:
(1) It's not very computable.
(2) It's not invariant under deformations.

A better answer

Count them with multiplicity!

$$
L(f)=\sum_{f(x)=x} \operatorname{ind}_{f}(x)
$$

where $\operatorname{ind}_{f}(x)$ is the index of x (a fixed point of f).
(1) This is more computable (as we will see).
(2) It is also invariant under deformations.

This is the total fixed point index or the Lefschetz number of f.

The index is like the "determinant" of the local behavior of f near the fixed point.
index 1
index 1
index -1

Under a deformation:

- Two fixed points of index 1 can "merge" into one of index 2;
- Two fixed points of indices 1 and -1 can "annihilate";
- etc...

Theorem
If $L(f) \neq 0$, then f has a fixed point.
Proof.
Obvious!

Theorem
If $L(f) \neq 0$, then f has a fixed point.

Proof.

Obvious!
The work is in finding a definition of $L(f)$ that we can calculate without already knowing what the fixed points are.

One option is:

Theorem

$$
L(f)=\sum_{i \in \mathbb{Z}}(-1)^{i} \operatorname{tr}\left(H_{i}(f)\right)
$$

where $H_{i}(f)$ is the map induced by f on $i^{\text {th }}$ homology.

One option is:

Theorem

$$
L(f)=\sum_{i \in \mathbb{Z}}(-1)^{i} \operatorname{tr}\left(H_{i}(f)\right)
$$

where $H_{i}(f)$ is the map induced by f on $i^{\text {th }}$ homology.

Example

$L\left(\mathrm{id}_{M}\right)=\sum_{i}(-1)^{i} \operatorname{dim}\left(H_{i}(M)\right)=\chi(M)$, the Euler characteristic.

One option is:

Theorem

$$
L(f)=\sum_{i \in \mathbb{Z}}(-1)^{i} \operatorname{tr}\left(H_{i}(f)\right)
$$

where $H_{i}(f)$ is the map induced by f on $i^{\text {th }}$ homology.

Example

$L\left(\mathrm{id}_{M}\right)=\sum_{i}(-1)^{i} \operatorname{dim}\left(H_{i}(M)\right)=\chi(M)$, the Euler characteristic.
Another option is to break down M into smaller pieces.

Theorem
For $f: M \rightarrow M$ and $g: N \rightarrow N$, we have $f \amalg g: M \amalg N \rightarrow M \amalg N$.
Then

$$
L(f \amalg g)=L(f)+L(g) .
$$

Theorem

For $f: M \rightarrow M$ and $g: N \rightarrow N$, we have $f \amalg g: M \amalg N \rightarrow M \amalg N$. Then

$$
L(f \amalg g)=L(f)+L(g) .
$$

Theorem
For $f: M \rightarrow M$ and $g: N \rightarrow N$, we have $f \times g: M \times N \rightarrow M \times N$.
Then

$$
L(f \times g)=L(f) \cdot L(g)
$$

Let $A \subseteq M$, and $h: M \rightarrow M$ with $h(A) \subseteq A$. Define $f=\left.h\right|_{A}: A \rightarrow A$, and induce $g: M / A \rightarrow M / A$.

Theorem

$$
L(h)=L(f)+L(g)
$$

Let $p: E \rightarrow B$ be a fiber bundle with fiber F, and let $f: E \rightarrow E$ be a map over $\bar{f}: B \rightarrow B$.

If b is a fixed point of \bar{f}, we have $f_{b}: F \rightarrow F$.
Theorem
If $E \rightarrow B$ is "orientable" and B is connected, then

$$
L(f)=L(\bar{f}) \cdot L\left(f_{b}\right)
$$

Let $E=B=S^{1}$, with $E \rightarrow B$ the double cover. Let \bar{f} be reflection in the y-axis, and f some map over it.

Then $L\left(f_{b}\right)=0$ over one fixed point of \bar{f}, but $=2$ over the other.

Definition

Fixed points b_{1} and b_{2} of \bar{f} are in the same fixed-point class if there is a path γ in B from b_{1} and b_{2}, such that $\bar{f}(\gamma)$ can be deformed back to γ keeping the endpoints fixed.

Theorem

If b_{1} and b_{2} are in the same fixed-point class, then $L\left(f_{b_{1}}\right)=L\left(f_{b_{2}}\right)$.

Nonorientable multiplicativity

Theorem (Ponto-S.)

$$
L(f)=\sum_{\substack{f i x e d ~ p o i n t ~ \\ \text { classes } C}} \operatorname{ind}_{\bar{f}}(C) \cdot L\left(f_{C}\right)
$$

- $L\left(f_{C}\right)$ means $L\left(f_{b}\right)$ for any $b \in C$
- $\operatorname{ind}_{\bar{f}}(C)=\sum_{b \in C} \operatorname{ind}_{\bar{f}}(b)$

Theorem (Ponto-S.)

$$
L(f)=\sum_{\substack{f \text { feed o opint } \\ \text { cassess } c}} \operatorname{ind}_{\bar{f}}(C) \cdot L\left(f_{C}\right)
$$

- $L\left(f_{C}\right)$ means $L\left(f_{b}\right)$ for any $b \in C$
- $\operatorname{ind}_{\bar{f}}(C)=\sum_{b \in C} \operatorname{ind}_{\bar{f}}(b)$

Remark

If $E \rightarrow B$ is orientable and B is connected, all fixed-points are in the same class C. Thus $_{\operatorname{ind}}^{\bar{f}}(C)=\sum_{f(b)=b} \operatorname{ind}_{\bar{f}}(b)=L(\bar{f})$, so

$$
L(f)=L(\bar{f}) \cdot L\left(f_{b}\right)
$$

(1) Additivity and multiplicativity theorems
(2) Traces
(3) Bicategorical trace
(4) Additivity and multiplicativity formulas
V a finite dim. vector space with basis $\left\{v_{i}\right\}, V^{*}=\operatorname{hom}(V, \mathbb{k})$ its dual, $f: V \rightarrow V$ a linear map. The trace of f can be calculated by:

$$
\mathbb{k} \xrightarrow{\eta} V \otimes V^{*} \xrightarrow{f \otimes \text { id }} V \otimes V^{*} \xrightarrow{\cong} V^{*} \otimes V \xrightarrow{\epsilon}
$$

$$
1 \longmapsto \sum_{i} v_{i} \otimes v_{i}^{*} \longmapsto \sum_{i j} a_{i j} v_{j} \otimes v_{i}^{*} \longmapsto \sum_{i j} v_{i}^{*} \otimes a_{i j} v_{j} \longmapsto \sum_{i j} a_{i j} v_{i}^{*}\left(v_{j}\right)
$$

$$
=\sum_{i} a_{i i}
$$

V a finite dim. vector space with basis $\left\{v_{i}\right\}, V^{*}=\operatorname{hom}(V, \mathbb{k})$ its dual, $f: V \rightarrow V$ a linear map. The trace of f can be calculated by:

$$
\mathbb{k} \xrightarrow{\eta} V \otimes V^{*} \xrightarrow{f \otimes \text { id }} V \otimes V^{*} \xrightarrow{\cong} V^{*} \otimes V \xrightarrow{\epsilon}
$$

$$
\begin{array}{r}
1 \longmapsto \sum_{i} v_{i} \otimes v_{i}^{*} \longmapsto \sum_{i j} a_{i j} v_{j} \otimes v_{i}^{*} \longmapsto \sum_{i j} v_{i}^{*} \otimes a_{i j} v_{j} \longmapsto \sum_{i j} a_{i j} v_{i}^{*}\left(v_{j}\right) \\
=\sum_{i} a_{i j}
\end{array}
$$

This is the definition of η.
V a finite dim. vector space with basis $\left\{v_{i}\right\}, V^{*}=\operatorname{hom}(V, \mathbb{k})$ its dual, $f: V \rightarrow V$ a linear map. The trace of f can be calculated by:

$$
\mathbb{k} \xrightarrow{\eta} V \otimes V^{*} \xrightarrow{f \otimes \text { id }} V \otimes V^{*} \xrightarrow{\cong} V^{*} \otimes V \xrightarrow{\epsilon}
$$

$$
1 \longmapsto \sum_{i} v_{i} \otimes v_{i}^{*} \longmapsto \sum_{i j} a_{i j} v_{j} \otimes v_{i}^{*} \longmapsto \sum_{i j} v_{i}^{*} \otimes a_{i j} v_{j} \stackrel{ }{\longmapsto} \sum_{i j} a_{i j} v_{i}^{*}\left(v_{j}\right)
$$

This is the definition of η.
ϵ is evaluation of covectors.

Geometrical traces

$M \hookrightarrow \mathbb{R}^{p}$ a smooth manifold, $T \nu_{M}$ the one-point compactification of its normal bundle, $f: M \rightarrow M$ continuous. Then

$$
S^{p} \xrightarrow{\eta} M_{+} \wedge T \nu \xrightarrow{f \wedge i d} M_{+} \wedge T \nu \xrightarrow{\cong} T \nu \wedge M_{+} \xrightarrow{\epsilon} S^{p} .
$$

has degree equal to the Lefschetz number of f.
$M \hookrightarrow \mathbb{R}^{p}$ a smooth manifold, $T \nu_{M}$ the one-point compactification of its normal bundle, $f: M \rightarrow M$ continuous. Then

Definition

A symmetric monoidal category is a category equipped with

- A "tensor product" of objects \otimes;
- A "unit object" I;
- Natural isomorphisms $M \otimes(N \otimes P) \cong(M \otimes N) \otimes P$ and $M \otimes I \cong M \cong I \otimes M$;
- Satisfying certain axioms.

Definition

A symmetric monoidal category is a category equipped with

- A "tensor product" of objects \otimes;
- A "unit object" I;
- Natural isomorphisms $M \otimes(N \otimes P) \cong(M \otimes N) \otimes P$ and $M \otimes I \cong M \cong I \otimes M$;
- Satisfying certain axioms.

Examples

(1) Vector spaces with the usual tensor product, $I=\mathbb{Z}$.
(2) "Pointed, stable" spaces with the smash product, $I=S^{p}$.

By a "pointed, stable" space I really mean a spectrum, but here's all you need to know.
(1) Any space M becomes pointed with a disjoint basepoint, M_{+}.
(2) Pointed spaces have a "smash product" \wedge.
(3) We have $(M \times N)_{+} \cong M_{+} \wedge N_{+}$.

4 "Stabilizing" allows us to smash by high-dimensional spheres S^{p} "without changing anything".

Definition

In a symmetric monoidal category, a dualizable object is M with M^{*} and maps

$$
I \xrightarrow{\eta} M \otimes M^{*} \quad M^{*} \otimes M \xrightarrow{\varepsilon} I
$$

satisfying axioms.

Definition

If M is dualizable, the trace of $f: M \rightarrow M$ is

$$
I \xlongequal{\stackrel{\eta}{\longrightarrow} M \otimes M^{*} \stackrel{f \otimes 1}{\longrightarrow}} M \otimes M^{*} \xrightarrow{\cong} M^{*} \otimes M \xrightarrow{\varepsilon} I
$$

Theorem (Easy)

If M and N are dualizable and $M \xrightarrow{f} M, N \xrightarrow{g} N$, then

Examples

(1) For vector spaces, I is the ground field \mathbb{k}, and composition of linear maps $\mathbb{k} \rightarrow \mathbb{k}$ is multiplication.
(2) For pointed stable spaces, I is a big sphere S^{p}, and composition of maps $S^{p} \rightarrow S^{p}$ multiplies their degrees.

Categorical trivial additivity

Theorem (Easy)
In a suitably "additive" context, we have

$$
I \xrightarrow{\operatorname{tr}(f \oplus g)} \left\lvert\, \begin{aligned}
& {\left[\begin{array}{l}
1 \\
1
\end{array}\right]} \\
& \\
& {[\operatorname{tr}(f), \operatorname{tr}(g)]}
\end{aligned}\right.
$$

Theorem (Easy)

In a suitably "additive" context, we have

$$
I \xrightarrow{\operatorname{tr}(f \oplus g)} \left\lvert\, \begin{aligned}
& {\left[\begin{array}{l}
1 \\
1
\end{array}\right]} \\
& \\
& {[\operatorname{tr}(f), \operatorname{tr}(g)]} \\
&
\end{aligned}\right.
$$

Examples

(1) For vector spaces, this is matrix multiplication:

$$
[\operatorname{tr}(f), \operatorname{tr}(g)] \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\operatorname{tr}(f)+\operatorname{tr}(g)
$$

Examples

(2) For manifolds, we have

Theorem (Not so easy) (May)
In a suitably "stable" context, for

we have

$$
I \xrightarrow[\operatorname{tr}(g)]{\left[\begin{array}{c}
-1 \\
1
\end{array}\right]} I \oplus I \xrightarrow{[\operatorname{tr}(f), \operatorname{tr}(h)]} I
$$

$$
L(f)=\sum_{\substack{\text { five d inint } \\ \text { casses }}} \operatorname{ind}_{\bar{f}}(C) \cdot L\left(f_{C}\right)
$$

$$
L(f)=\sum_{\substack{\text { five d dinit } \\ \text { casses } C}} \operatorname{ind}_{\bar{f}}(C) \cdot L\left(f_{C}\right)
$$

Can be expressed as a composition:

$$
L(f)=\sum_{\substack{\text { five d dinit } \\ \text { casses } C}} \operatorname{ind}_{\bar{f}}(C) \cdot L\left(f_{C}\right)
$$

Can be expressed as a composition:

$$
L(f)=\sum_{\substack{\text { five d dinit } \\ \text { casses } C}} \operatorname{ind}_{\bar{f}}(C) \cdot L\left(f_{C}\right)
$$

Can be expressed as a composition:

For $\bar{f}: B \rightarrow B$, we define

$$
\Lambda^{\bar{f}} B=\{\gamma:[0,1] \rightarrow B \mid \gamma(0)=\bar{f}(\gamma(1))\}
$$

For $\bar{f}: B \rightarrow B$, we define

$$
\Lambda^{\bar{f}} B=\{\gamma:[0,1] \rightarrow B \mid \gamma(0)=\bar{f}(\gamma(1))\}
$$

- If b is a fixed point, then the constant path c_{b} lies in $\Lambda^{\bar{f}} B$.
- Fixed points b_{1}, b_{2} are in the same class exactly when $c_{b_{1}}$ and $c_{b_{2}}$ lie in the same path-component of $\Lambda^{\bar{f}} B$.
(1) Additivity and multiplicativity theorems
(2) Traces
(3) Bicategorical trace
(4) Additivity and multiplicativity formulas
R a noncommutative ring, $M \cong R^{n}$ a finitely generated free right R-module, $f: M \rightarrow M$ an R-map.
- Can give f a "matrix" $\left(a_{i j}\right)$, each $a_{i j} \in R$.
- Define $\operatorname{tr}(f)=\sum_{i} a_{i i}$?
R a noncommutative ring, $M \cong R^{n}$ a finitely generated free right R-module, $f: M \rightarrow M$ an R-map.
- Can give f a "matrix" $\left(a_{i j}\right)$, each $a_{i j} \in R$.
- Define $\operatorname{tr}(f)=\sum_{i} a_{i i}$?
- This is not basis-invariant!
R a noncommutative ring, $M \cong R^{n}$ a finitely generated free right R-module, $f: M \rightarrow M$ an R-map.
- Can give f a "matrix" $\left(a_{i j}\right)$, each $a_{i j} \in R$.
- Define $\operatorname{tr}(f)=\sum_{i} a_{i i}$?
- This is not basis-invariant!

Definition

For an R - R-bimodule N, its shadow is $\langle\langle N\rangle=N /\langle r \cdot n=n \cdot r\rangle$.
R a noncommutative ring, $M \cong R^{n}$ a finitely generated free right R-module, $f: M \rightarrow M$ an R-map.

- Can give f a "matrix" $\left(a_{i j}\right)$, each $a_{i j} \in R$.
- Define $\operatorname{tr}(f)=\sum_{i} a_{i i}$?
- This is not basis-invariant!

Definition

For an R - R-bimodule N, its shadow is $\langle\langle N\rangle\rangle=N /\langle r \cdot n=n \cdot r\rangle$.

Definition

The Hattori-Stallings trace of f is the image of $\sum_{i} a_{i i}$ in $\langle R\rangle$.

Our f.g. free right module M has a dual $M^{*}=\operatorname{hom}_{R}(M, R)$, a left R-module.

$$
\mathbb{Z} \xrightarrow{\eta} M \otimes_{R} M^{*} \xrightarrow{f \otimes \mathrm{id}} M \otimes_{R} M^{*} \ldots ? \xrightarrow{? ?} M^{*} \otimes_{\mathbb{Z}} M \xrightarrow{\epsilon} R .
$$

Our f.g. free right module M has a dual $M^{*}=\operatorname{hom}_{R}(M, R)$, a left R-module.

$$
\mathbb{Z} \xrightarrow{\eta} M \otimes_{R} M^{*} \xrightarrow{f \otimes \mathrm{id}} M \otimes_{R} M^{*} \xrightarrow{\cong}\left\langle\left\langle M^{*} \otimes_{\mathbb{Z}} M\right\rangle \xrightarrow{\epsilon}\langle\langle R\rangle .\right.
$$

sends $1 \in \mathbb{Z}$ to the Hattori-Stallings trace $\operatorname{tr}(f) \in\langle\langle R\rangle$.
$\phi: R \rightarrow R$ a ring homomorphism, $f: M \rightarrow M$ a ϕ-equivariant map:

$$
f(m \cdot r)=f(m) \cdot \phi(r)
$$

Then $\operatorname{tr}(f)$ must take values in $\left.\left\langle R_{\phi}\right\rangle\right\rangle=R /\langle r \cdot s=s \cdot \phi(r)\rangle$.

$$
\left.\mathbb{Z} \xrightarrow{\eta} M \otimes_{R} M^{*} \xrightarrow{f \otimes \mathrm{id}} M \otimes_{R_{\phi}} M^{*} \xrightarrow{\cong}\left\langle M^{*} \otimes_{\mathbb{Z}} M_{\phi}\right\rangle\right\rangle \xrightarrow{\epsilon}\left\langle\left\langle R_{\phi}\right\rangle\right\rangle .
$$

M an R - S-bimodule which is f.g. free as an S-module. Then M^{*} is an S - R-bimodule.
$\langle R\rangle\rangle \xrightarrow{\eta}\left\langle\left\langle M \otimes_{S} M^{*}\right\rangle \xrightarrow{f \otimes \text { id }}\left\langle\left\langle M \otimes_{S} M^{*}\right\rangle \xrightarrow{\cong}\left\langle M^{*} \otimes_{R} M\right\rangle \xrightarrow{\epsilon}\langle\langle S\rangle\right.\right.$.
sends each $r \in\langle\langle R\rangle$ to the H -S trace of the S-module map

$$
m \mapsto r \cdot f(m)
$$

M an R - S-bimodule which is f.g. free as an S-module.
Let $\phi: R \rightarrow R, \psi: S \rightarrow S$ be ring homomorphisms, and let $f: M \rightarrow M$ be ϕ - ψ-equivariant:

$$
f(r \cdot m \cdot s)=\phi(r) \cdot f(m) \cdot \psi(s)
$$

Then the trace
$\left.\left.\left\langle R_{\phi}\right\rangle\right\rangle \xrightarrow{\eta}\left\langle M \otimes_{s_{\psi}} M_{\phi}^{*}\right\rangle \xrightarrow{f \otimes \mathrm{id}}\left\langle M \otimes_{s_{\psi}} M_{\phi}^{*}\right\rangle \xrightarrow{\cong}\left\langle M^{*} \otimes_{R_{\phi}} M_{\psi}\right\rangle\right\rangle \xrightarrow{\epsilon}\left\langle\left\langle S_{\psi}\right\rangle\right\rangle$.
is a $\operatorname{map}\left\langle\left\langle R_{\phi}\right\rangle \rightarrow\left\langle\left\langle S_{\psi}\right\rangle\right.\right.$.

Definition

A bicategory is a structure \mathscr{B} with

- "Objects" or " 0 -cells" A, B, C, \ldots;
- "Hom-categories" $\mathscr{B}(A, B), \ldots$;
- "Composition" or "tensor product" functors

$$
\mathscr{B}(A, B) \times \mathscr{B}(B, C) \xrightarrow{\odot} \mathscr{B}(A, C)
$$

- "Unit" objects $U_{A} \in \mathscr{B}(A, A)$;
- Natural isomorphisms $M \odot(N \odot P) \cong(M \odot N) \odot P$ and $M \odot U_{B} \cong M \cong U_{A} \odot M$;
- Satisfying certain axioms.

Example

Objects $=$ rings, $\mathscr{B}(R, S)=$ the category of R - S-bimodules.

Definition (Ponto)

A shadow on a bicategory \mathscr{B} is a collection of functors

$$
《-\rangle: \mathscr{B}(A, A) \rightarrow \mathscr{T}
$$

together with

- Isomorphisms $\langle M \odot N\rangle \cong\langle N \odot M\rangle ;$
- Satisfying certain axioms.

Traces with shadows

Definition

An object $M \in \mathscr{B}(A, B)$ is dualizable if there is $M^{*} \in \mathscr{B}(B, A)$ and maps

$$
U_{A} \xrightarrow{\eta} M \odot M^{*} \quad M^{*} \odot M \xrightarrow{\varepsilon} U_{B}
$$

satisfying axioms.

Definition

If M is dualizable, the trace of $f: M \rightarrow M$ is

$$
\left\langle U_{A}\right\rangle \stackrel{\eta}{\xrightarrow{\eta}\left\langle\left\langle M \odot M^{*}\right\rangle \stackrel{f \otimes 1}{\longrightarrow}\right.}\left\langle\langle M \odot M ^ { * } \rangle \stackrel { \cong } { \operatorname { t r } (f) } \left\langle\langle M ^ { * } \odot M \rangle \stackrel { \varepsilon } { \longrightarrow } \left\langle\left\langle U_{B}\right\rangle\right.\right.\right.
$$

Definition

If M is dualizable, the trace of $f: P \odot M \rightarrow M \odot Q$ is
(Omitting the \odot symbols for space reasons.)

Theorem (Easy)
If M and N are dualizable in a bicategory, and $f: P \odot M \rightarrow M \odot Q$ and $g: Q \odot N \rightarrow N \odot R$, then

Theorem (Easy)
If M and N are dualizable in a bicategory, and $f: P \odot M \rightarrow M \odot Q$ and $g: Q \odot N \rightarrow N \odot R$, then

Corollary

For f a ϕ - ψ-equivariant map and g a ψ - χ-equivariant map,

$$
\left.\left\langle R_{\phi}\right\rangle\right\rangle \xrightarrow{\operatorname{tr}(f \otimes g)}\left\langle\left\langle S_{\psi}\right\rangle\right\rangle \xrightarrow{\operatorname{tr}(g)}\left\langle\left\langle T_{\chi}\right\rangle\right.
$$

Outline
(1) Additivity and multiplicativity theorems
(2) Traces
(3) Bicategorical trace
(4) Additivity and multiplicativity formulas

We work in a bicategory of spaces and (pointed, stable) fibrations.

$$
\begin{array}{rll}
\text { rings } R, S & \longleftrightarrow & \text { spaces } A, B \\
R \text { - } S \text {-bimodules } & \longleftrightarrow & \text { fibrations } E \rightarrow A \times B
\end{array}
$$

We work in a bicategory of spaces and (pointed, stable) fibrations.

$$
\begin{aligned}
& \text { rings } R, S \longleftrightarrow \\
& \text { spaces } A, B \\
& R \text { - } S \text {-bimodules } \longleftrightarrow \\
& \text { fibrations } E \rightarrow A \times B \\
& \text { the integers } \mathbb{Z} \longleftrightarrow \\
& \text { the one-point space } \star \\
& \text { right } R \text {-module } \longleftrightarrow \\
& \text { fibration } E \rightarrow B \\
& \text { left } R \text {-module } \longleftrightarrow \\
& \text { fibration } E \rightarrow B
\end{aligned}
$$

We work in a bicategory of spaces and (pointed, stable) fibrations.
rings $R, S \longleftrightarrow$ spaces A, B
R-S-bimodules \longleftrightarrow fibrations $E \rightarrow A \times B$
the integers $\mathbb{Z} \longleftrightarrow$ the one-point space \star
right R-module \longleftrightarrow fibration $E \rightarrow B$
left R-module \longleftrightarrow fibration $E \rightarrow B$
ring $\operatorname{map} \phi: R \rightarrow S \longleftrightarrow$ continuous map $\phi: A \rightarrow B$

We work in a bicategory of spaces and (pointed, stable) fibrations.
rings $R, S \longleftrightarrow$ spaces A, B
R-S-bimodules \longleftrightarrow fibrations $E \rightarrow A \times B$
the integers $\mathbb{Z} \longleftrightarrow$ the one-point space \star
right R-module
\longleftrightarrow fibration $E \rightarrow B$
left R-module \longleftrightarrow fibration $E \rightarrow B$
ring map $\phi: R \rightarrow S \longleftrightarrow$ continuous map $\phi: A \rightarrow B$
$\left\langle R_{\phi}\right\rangle \longleftrightarrow$ twisted free loop space $\Lambda^{\phi} B$

We work in a bicategory of spaces and (pointed, stable) fibrations.
rings $R, S \longleftrightarrow$ spaces A, B
R-S-bimodules \longleftrightarrow fibrations $E \rightarrow A \times B$
the integers $\mathbb{Z} \longleftrightarrow$ the one-point space \star
right R-module \longleftrightarrow fibration $E \rightarrow B$
left R-module \longleftrightarrow fibration $E \rightarrow B$
ring map $\phi: R \rightarrow S \longleftrightarrow$ continuous map $\phi: A \rightarrow B$ $\left\langle R_{\phi}\right\rangle \longleftrightarrow$ twisted free loop space $\Lambda^{\phi} B$
(This bicategory of spectra was constructed by May-Sigurdsson.)

Let $f: E \rightarrow E$ be a map over $\bar{f}: B \rightarrow B$.

We can regard $E \rightarrow B$ as a "left B-module", and f as an " \bar{f}-equivariant map." It is dualizable if the fibers of p are manifolds, and its trace is

$$
\Lambda^{\bar{f}} B_{+} \wedge S^{p} \xrightarrow{\left[\ldots, L\left(f_{C}\right), \ldots\right]} S^{p}
$$

Definition

This is the refined fiberwise Lefschetz number of f.

We can also regard id ${ }_{B}: B \rightarrow B$ as a "right B-module", and \bar{f} itself as an " \bar{f}-equivariant map". It is dualizable if B is a manifold, and its trace is

$$
S^{p} \xrightarrow{\left[\begin{array}{c}
\vdots \\
\operatorname{ind}_{\bar{f}}(C) \\
\vdots
\end{array}\right]} \Lambda^{\bar{f}} B_{+} \wedge S^{p}
$$

Definition

This (or its image in homology) is the Reidemeister trace $R(\bar{f})$.

We can also regard id ${ }_{B}: B \rightarrow B$ as a "right B-module", and \bar{f} itself as an " \bar{f}-equivariant map". It is dualizable if B is a manifold, and its trace is

$$
S^{p} \xrightarrow{\left[\begin{array}{c}
\vdots \\
\operatorname{ind}_{\bar{f}}(C) \\
\vdots
\end{array}\right]} \Lambda^{\bar{f}} B_{+} \wedge S^{p}
$$

Definition

This (or its image in homology) is the Reidemeister trace $R(\bar{f})$.
(The Reidemeister trace is of independent interest; it refines $L(\bar{f})$ and supports a converse to the Lefschetz fixed point theorem.)

The "tensor product" of the "right B-module" $\mathrm{id}_{B}: B \rightarrow B$ and the "left B-module" $E \rightarrow B$ is the space E.

$$
S^{p} \underbrace{\left[\begin{array}{c}
\vdots \\
\operatorname{ind}_{\bar{f}}(C) \\
\vdots
\end{array}\right]}_{L(f)} \Lambda^{\bar{f}} B_{+} \wedge S^{p} \xrightarrow{\left[\ldots, L\left(f_{C}\right), \ldots\right]} S^{p}
$$

The "tensor product" of the "right B-module" $\mathrm{id}_{B}: B \rightarrow B$ and the "left B-module" $E \rightarrow B$ is the space E.

$$
S^{p} \underbrace{\left[\begin{array}{c}
\vdots \\
\operatorname{ind}_{\bar{f}}(C) \\
\vdots
\end{array}\right]}_{L(f)} \Lambda^{\bar{f}} B_{+} \wedge S^{p} \xrightarrow{\left[\ldots, L\left(f_{C}\right), \ldots\right]} S^{p}
$$

Theorem

$$
L(f)=\sum_{\substack{f i x e d \text { point } \\ \text { classes } C}} \operatorname{ind}_{\bar{f}}(C) \cdot L\left(f_{C}\right)
$$

The "tensor product" of the "right B-module" $\mathrm{id}_{B}: B \rightarrow B$ and the "left B-module" $E \rightarrow B$ is the space E.

$$
S^{p} \underbrace{\left[\begin{array}{c}
\vdots \\
\operatorname{ind}_{\bar{f}}(C) \\
\vdots
\end{array}\right]}_{L(f)} \Lambda^{\bar{f}} B_{+} \wedge S^{p} \xrightarrow{\left[\ldots, L\left(f_{C}\right), \ldots\right]} S^{p}
$$

Theorem

$$
L(f)=\sum_{\substack{f i x e d \text { point } \\ \text { classes } C}} \operatorname{ind}_{\bar{f}}(C) \cdot L\left(f_{C}\right)
$$

Also generalizes to compute $R(f)$ in terms of $R\left(f_{C}\right)$.

Work in yet another bicategory.

$$
\begin{aligned}
& \text { rings } R, S \longleftrightarrow \\
& \text { small categories } A, B \\
& R \text {-S-bimodules } \longleftrightarrow \\
& \text { functors } B^{\circ p} \times A \rightarrow \text { Spaces } \\
& \text { ring map } \phi: R \rightarrow S \longleftrightarrow \\
& \text { functor } \phi: A \rightarrow B
\end{aligned}
$$

Work in yet another bicategory.

rings R, S	\longleftrightarrow
small categories A, B	
R - S-bimodules	\longleftrightarrow
functors $B^{o p} \times A \rightarrow$ Spaces	
ring map $\phi: R \rightarrow S$	\longleftrightarrow
functor $\phi: A \rightarrow B$	
$\langle R\rangle$	\longleftrightarrow

Definition

The shadow of a category A is the disjoint union of all endomorphisms in A, modulo "conjugacy".

$$
\langle A\rangle=\left(\coprod_{a \in A} \operatorname{hom}_{A}(a, a)\right) /(\alpha \beta \sim \beta \alpha)
$$

Work in yet another bicategory.

rings R, S	\longleftrightarrow
small categories A, B	
R-S-bimodules	\longleftrightarrow
functors $B^{\circ p} \times A \rightarrow$ Spaces	
ring map $\phi: R \rightarrow S$	\longleftrightarrow
functor $\phi: A \rightarrow B$	
$\langle R\rangle$	\longleftrightarrow

Definition

The shadow of a category A is the disjoint union of all endomorphisms in A, modulo "conjugacy".

$$
\langle A\rangle=\left(\coprod_{a \in A} \operatorname{hom}_{A}(a, a)\right) /(\alpha \beta \sim \beta \alpha)
$$

In particular, $\langle A\rangle\rangle$ contains a class for each identity morphism $\left[1_{a}\right]$, with $\left[1_{a}\right]=\left[1_{b}\right]$ if and only if $a \cong b$.

- Let $B=(a \rightarrow b)$. Then (stabilizing)

$$
\langle B\rangle=\left\{\left[1_{a}\right],\left[1_{b}\right]\right\}_{+} \wedge S^{p} \cong S^{p} \vee S^{p} .
$$

- Let $B=(a \rightarrow b)$. Then (stabilizing)

$$
\langle B\rangle=\left\{\left[1_{a}\right],\left[1_{b}\right]\right\}_{+} \wedge S^{p} \cong S^{p} \vee S^{p} .
$$

- We can regard $(A \hookrightarrow M)$ as a functor $B \rightarrow$ Spaces, hence as a "left B-module" M.
- An $h: M \rightarrow M$ with $f=\left.h\right|_{A}$ gives a "module map" $M \rightarrow M$.
- Let $B=(a \rightarrow b)$. Then (stabilizing)

$$
\langle B\rangle=\left\{\left[1_{a}\right],\left[1_{b}\right]\right\}_{+} \wedge S^{p} \cong S^{p} \vee S^{p} .
$$

- We can regard $(A \hookrightarrow M)$ as a functor $B \rightarrow$ Spaces, hence as a "left B-module" M.
- An $h: M \rightarrow M$ with $f=\left.h\right|_{A}$ gives a "module map" $M \rightarrow M$.
- M is dualizable if M and A are manifolds, and the trace of h is

$$
S^{p} \vee S^{p} \xrightarrow{[L(f), L(h)]} S^{p}
$$

With $B=(a \rightarrow b)$ as before, we have a functor $N: B^{o p} \rightarrow$ Spaces:

$$
\begin{aligned}
& N(a)=* \\
& N(b)=S^{p}
\end{aligned}
$$

This is dualizable as a "right B-module", and its trace is

$$
S^{p} \xrightarrow{\left[\begin{array}{c}
-1 \\
1
\end{array}\right]} S^{p} \vee S^{p}
$$

The "tensor product" of the "right B-module" $A \hookrightarrow M$ and the "left B-module N is the quotient M / A.

The "tensor product" of the "right B-module" $A \hookrightarrow M$ and the "left B-module N is the quotient M / A.

Theorem

$$
L(g)=L(h)-L(f)
$$

Generalizes to colimits of other diagram shapes.

Example

- B a small "homotopically finite" category.
- The trivial left B-module has trace $[1,1, \ldots, 1]$.
- The trivial right B-module has a trace that assigns a "weight" k_{a} to each isomorphism class of objects [1a].
- The tensor product of these modules is $|N B|$, and so

$$
\chi(|N B|)=\sum_{a} k_{a}
$$

is the Euler characteristic of B (Leinster).
(1) Addition and multiplication are both certain special cases of linear combinations.
(2) "Sums" and "products" of spaces are both certain kinds of tensor product.
(3) Additivity and multiplicativity formulas for trace-like invariants follow formally from these identifications.

