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@ Additivity and multiplicativity theorems



Counting fixed points

Let M be a manifold, f: M — M continuous.

Question

What is a good invariant of f that tells us about its fixed points?
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Counting fixed points

Let M be a manifold, f: M — M continuous.

Question

What is a good invariant of f that tells us about its fixed points?

First try
FP(f) = the number of fixed points of f.

Problems with this:
@ It's not very computable.

® It's not invariant under deformations.



Counting with multiplicity

A better answer

Count them with multiplicity!

L(f)= > inde(x)

f(x)=x

where ind¢(x) is the index of x (a fixed point of f).

@ This is more computable (as we will see).

® It is also invariant under deformations.

This is the total fixed point index or the Lefschetz number of f.



Indices of fixed points

The index is like the “determinant” of the local behavior of f near
the fixed point.

index 1 index 1 index —1

N2\ N
TN I NS

Under a deformation:

e Two fixed points of index 1 can “merge”’ into one of index 2;
e Two fixed points of indices 1 and —1 can “annihilate”;

e etc...



The Lefschetz fixed-point theorem

Theorem
If L(f) # 0, then f has a fixed point.

Proof.
Obvious! O



The Lefschetz fixed-point theorem

Theorem
If L(f) # 0, then f has a fixed point.

Proof.
Obvious! O

The work is in finding a definition of L(f) that we can calculate
without already knowing what the fixed points are.



Computing the Lefschetz number

One option is:
Theorem
L(f) = (=1)'tr(Hi(f))
i€z

where H;(f) is the map induced by f on i*" homology.
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Computing the Lefschetz number

One option is:
Theorem
L(f) = (=1)'tr(Hi(f))
i€z

where H;(f) is the map induced by f on i*" homology.

Example

L(idp) = >;(=1)'dim(H;(M)) = x(M), the Euler characteristic.

Another option is to break down M into smaller pieces.



Trivial additivity and multiplicativity

Theorem
Forf: M— M andg: N — N, we have f Il g: MIIN — MII N.
Then

L(fIIg) = L(f) + L(g)-



Trivial additivity and multiplicativity

Theorem

Forf: M— M andg: N — N, we have fIlg: MIIN — MIIL N.
Then

L(fIIg) = L(f) + L(g)-

Theorem

Forf: M — M andg: N — N, we have f x g: M x N — M x N.
Then

L(f x g) = L(f) - L(g)-



Nontrivial additivity

Let AC M, and h: M — M with h(A) C A. Define
f=nhla: A— A, and induce g: M/A — M/A.

A—> M —> M/A

f h ig

A—> M —> M/A

Theorem

L(h) = L(f) + L(g).



Nontrivial multiplicativity

Let p: E — B be a fiber bundle with fiber F, and let f: E — E be
amapover f: B— B.

f

E—E
pl P
B——B

f

If b is a fixed point of f, we have f,: F — F.

Theorem

If E— B is “orientable” and B is connected, then

L(f) = L(F) - L(fy).



A nonorientable fibration

Let E = B = S!, with E — B the double cover. Let f be
reflection in the y-axis, and f some map over it.

=
R

Then L(f,) = 0 over one fixed point of f, but = 2 over the other.



Fixed-point classes

Definition

Fixed points b; and b, of f are in the same fixed—_point class if
there is a path 7 in B from b; and by, such that () can be
deformed back to  keeping the endpoints fixed.

f(v)

bl@b2

~

Theorem
If by and by are in the same fixed-point class, then L(fy,) = L(fp,).



Nonorientable multiplicativity

Theorem (Ponto-S.)

L(f)= > inde(C)- L(fc)

fixed point
classes C

e [(fc) means L(fp) for any be C
e ind7(C) = > ,ccindz(b)



Nonorientable multiplicativity

Theorem (Ponto-S.)

L(f)= > inde(C)- L(fc)

fixed point
classes C

e [(fc) means L(fp) for any be C
e ind7(C) = > ,ccindz(b)

Remark

If E — B is orientable and B is connected, all fixed—point_s are in
the same class C. Thus indz(C) = > () indz(b) = L(f), so

L(f) = L(F) - L(f)



@® Traces



Categorical traces

V a finite dim. vector space with basis {v;}, V* = hom(V, k) its
dual, f: V — V alinear map. The trace of f can be calculated by:

k—svev M yoyvi = gy €

k.

1>, vi®V QZU ajv; @ v |—>Zij vi® a,-jvjn—>2,-j ajvi(vj)

= aii-
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Categorical traces

V a finite dim. vector space with basis {v;}, V* = hom(V, k) its
dual, f: V — V alinear map. The trace of f can be calculated by:

k—svev M yoyvi = gy €

k.

1>, vi®v QZU ajv; @ v |—>Zij vi® a,-jvjn—>2,-j ajvi(vj)

=2 dii-

This is the definition of 7. € is evaluation of covectors.



Geometrical traces

M — RP a smooth manifold, Twvy, the one-point compactification
of its normal bundle, f: M — M continuous. Then

5P My ATy YL M ATy S TuA M, —= 5P,

has degree equal to the Lefschetz number of f.



Geometrical traces

M — RP a smooth manifold, Twvy, the one-point compactification
of its normal bundle, f: M — M continuous. Then
5P My ATy YL ATy S TuA M, —= 5P,

has degreé equal to the Lefschetz number of f.

“Pontryagin-Thom maps”



Symmetric monoidal categories

Definition

A symmetric monoidal category is a category equipped with
e A “tensor product” of objects ®;
e A “unit object” /;
e Natural isomorphisms M @ (N ® P) = (M ® N) ® P and
MI=ZM=1® M,

e Satisfying certain axioms.



Symmetric monoidal categories

Definition

A symmetric monoidal category is a category equipped with
e A “tensor product” of objects ®;
e A “unit object” /;

¢ Natural isomorphisms M ® (N ® P) =2 (M ® N) ® P and
MeI=M=1x M,

e Satisfying certain axioms.

Examples

@ Vector spaces with the usual tensor product, | = Z.

® “Pointed, stable” spaces with the smash product, / = S”.



By a “pointed, stable” space | really mean a spectrum, but here's
all you need to know.

@ Any space M becomes pointed with a disjoint basepoint, M.

® Pointed spaces have a “smash product” A.

® We have (M x N); = My A Ny

O "Stabilizing” allows us to smash by high-dimensional spheres
SP “without changing anything”.



Duality and trace

Definition
In a symmetric monoidal category, a dualizable object is M with
M* and maps

IS MM M oM
satisfying axioms.

Definition
If M is dualizable, the trace of f: M — M is

MM P Mo M S M o M —

tr(f)



Categorical trivial multiplicativity

Theorem (Easy)
If M and N are dualizable and M 55 M. N &5 N, then

tr(fRg)

/

Examples

@ For vector spaces, / is the ground field k, and composition of
linear maps k — k is multiplication.

® For pointed stable spaces, / is a big sphere SP, and
composition of maps SP — SP multiplies their degrees.



Categorical trivial additivity

Theorem (Easy)

In a suitably “additive” context, we have

m Py [tr(F),tr(g)] /
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Categorical trivial additivity

Theorem (Easy)

In a suitably “additive” context, we have

m Py [tr(F),tr(g)] /
\M_,/

tr(fég)

/

Examples

@ For vector spaces, this is matrix multiplication:

[er(), tr(@)] - [3] = () + tr(g)



Categorical trivial additivity

Examples

® For manifolds, we have

(2 1S o (D
NS N

N~

SP SPv SP Sp



Categorical nontrivial additivity

Theorem (Not so easy) (May)

In a suitably “stable” context, for

A——>M—> M/A

I

A——>M—> M/A

we have

/ {_11} Py [tr(),tr(h)] /

tr(g)
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Arrow-theoretic nonorientable multiplicativity

L(f)= Y indg(C)-L(fc)

fixed point
classes C

Can be expressed as a composition:

ind-(C)
: V' S" [L(fe)]

Sn T fixed point - Sn

L(f)



Arrow-theoretic nonorientable multiplicativity

L(f)= Y indg(C)-L(fc)

fixed point
classes C

Can be expressed as a composition:

ind(C)
: _ o L(F)on.
5n4>/\f3+/\5n%5n

L(f)



The twisted free loop space

For f: B — B, we define

NB={3: 0.1 = B|4(0) = Th(1)]



The twisted free loop space

For f: B — B, we define

NB={3: 0.1 = B|4(0) = Th(1)]

e If bis a fixed point, then the constant path ¢, lies in AB.

e Fixed points by, by are in the same class exactly when cp, and
Cp, lie in the same path-component of AfB.



© Bicategorical trace



The Hattori-Stallings trace

R a noncommutative ring, M = R" a finitely generated free right
R-module, f: M — M an R-map.

e Can give f a "matrix” (aj), each aj; € R.
e Define tr(f) = . a;i?
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The Hattori-Stallings trace

R a noncommutative ring, M = R" a finitely generated free right
R-module, f: M — M an R-map.

e Can give f a "matrix” (aj), each aj; € R.
o Define tr(f) = > a;i?

e This is not basis-invariant!

Definition
For an R-R-bimodule N, its shadow is (N) = N/(r “n=mn-r).

Definition
The Hattori-Stallings trace of f is the image of > _; aji in {R).



Categorical Hattori-Stallings

Our f.g. free right module M has a dual M* = homg(M, R), a left
R-module.

7" Mop M 2L Mor M s My M— R,



Categorical Hattori-Stallings

Our f.g. free right module M has a dual M* = homg(M, R), a left
R-module.
n . f®id « = « €
7 —— M®@g M* — M ®@r M* —=(M* @7 M)——(R).

sends 1 € Z to the Hattori-Stallings trace tr(f) € (R).



Generalization #1: twisted traces

¢: R = R a ring homomorphism, f: M — M a ¢-equivariant map:
f(m-r)=f(m)-o(r).
Then tr(f) must take values in (Ry) = R/(r -s=s-¢(r)).

7 47]> M @p M* @) M ®R¢ M* i><<I\/I* X7 M¢>>—6><<R¢>>



Generalization #2: traces for bimodules

M an R-S-bimodule which is f.g. free as an S-module.
Then M* is an S-R-bimodule.

(R)—"(M @5 M*)-"Z5(M @5 M) —=>(M* @ M)—(S).
sends each r € (R) to the H-S trace of the S-module map

m i r-f(m)



Generalization #3: twisted traces for bimodules

M an R-S-bimodule which is f.g. free as an S-module.
Let p: R— R, ¥: S — S be ring homomorphisms, and let
f: M — M be ¢-1-equivariant:

f(r-m-s)=¢(r)-f(m)-y(s).
Then the trace

[~23

(Ro)—L=(M @5, M3)TEL(M @5, M2) == (M* @r, My)—>(Sy).

is a map (Ry) = (Sy).



Definition

A bicategory is a structure 2 with
e “Objects” or “O-cells" A, B, C,...;
e "Hom-categories” #A(A, B),...;

e “Composition” or “tensor product” functors
B(A,B) x B(B,C) 2 B(A, C)

e “Unit" objects Us € B(A, A);
e Natural isomorphisms M ® (N ® P) = (M ® N) ® P and
Mo Ug =M= Upso M,

e Satisfying certain axioms.

Example

Objects = rings, #(R,S) = the category of R-S-bimodules.



Definition (Ponto)

A shadow on a bicategory 4 is a collection of functors
(=) B(AA) — T

together with
e Isomorphisms (M © N) = (N © M),

e Satisfying certain axioms.



Traces with shadows

Definition
An object M € #(A, B) is dualizable if there is M* € #(B, A) and
maps

UrLZMoM  MoMS Ug

satisfying axioms.

Definition
If M is dualizable, the trace of f: M — M is

(Ua)—= (M © M=) LE (M © M*)—==(M* © M)—>(Ug)
/

tr(f)



Twisted traces

Definition
If M is dualizable, the traceof f: POM — M® Q is

(P)—L=(P M M) LE (M Q M*)—=> (@ M* M)—=(Q)

tr(f)

(Omitting the ® symbols for space reasons.)



Bicategorical multiplicativity

Theorem (Easy)

If M and N are dualizable in a bicategory, and
f:POM—>MoQRandg: QON — NGO R, then

tr(g)

(R)

tr(feg)



Bicategorical multiplicativity

Theorem (Easy)

If M and N are dualizable in a bicategory, and
f:POM—>MoQRandg: QON — NGO R, then

(@ (R)

tr(feg)

Corollary

For f a ¢p-1p-equivariant map and g a 1-x-equivariant map,

tr(f)

(Sp)—E (T
\W/f

tr(fRg)

(Ro)



O Additivity and multiplicativity formulas
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We work in a bicategory of spaces and (pointed, stable) fibrations.

rings R, S +— spaces A, B
R-S-bimodules «+— fibrations E —+ A x B
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We work in a bicategory of spaces and (pointed, stable) fibrations.

rings R, S
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the integers Z
right R-module
left R-module

spaces A, B
fibrations E —+ Ax B
the one-point space *
fibration E — B
fibration E — B

1111
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We work in a bicategory of spaces and (pointed, stable) fibrations.

rings R, S
R-S-bimodules

the integers Z

right R-module

left R-module

ring map ¢: R — S
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A different bicategory

We work in a bicategory of spaces and (pointed, stable) fibrations.

rings R, S
R-S-bimodules

the integers Z

right R-module

left R-module

ring map ¢: R — S

{Ro)

ITITTT]

spaces A, B

fibrations E -+ A x B

the one-point space *
fibration £ — B

fibration E — B

continuous map ¢: A— B
twisted free loop space A?B



A different bicategory

We work in a bicategory of spaces and (pointed, stable) fibrations.

rings R, S +— spaces A, B
R-S-bimodules +— fibrations E — A x B
the integers Z <— the one-point space *
right R-module <+— fibration E —» B
left R-module <+— fibration E — B
ring map ¢: R —+S <+— continuous map ¢: A — B
(Rs) <+ twisted free loop space A?B

(This bicategory of spectra was constructed by May-Sigurdsson.)



The refined fiberwise Lefschetz number

Let f: E— E be a map over f: B — B.

f

E——E
pl p
B—B

f

We can regard E — B as a “left B-module”, and f as an
“f-equivariant map.” It is dualizable if the fibers of p are
manifolds, and its trace is

SL(fe),en]
ALk

ANB, nsP L sP

Definition

This is the refined fiberwise Lefschetz number of f.



The Reidemeister trace

We can also regard idg: B — B as a “right B-module”, and f
itself as an “f-equivariant map”. It is dualizable if B is a manifold,
and its trace is

ind(C)
sP Lt AT, AP

Definition

This (or its image in homology) is the Reidemeister trace R(f).



The Reidemeister trace

We can also regard idg: B — B as a “right B-module”, and f
itself as an “f-equivariant map”. It is dualizable if B is a manifold,
and its trace is

ind(C)
sP Lt AT, AP

Definition

This (or its image in homology) is the Reidemeister trace R(f).

(The Reidemeister trace is of independent interest; it refines L(f)
and supports a converse to the Lefschetz fixed point theorem.)



Nonorientable multiplicativity

The “tensor product” of the “right B-module” idg: B — B and
the “left B-module” E — B is the space E.

ind-(C)
: _ o L(FE)on.
Sp4>/\f8+/\5p%5p
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Nonorientable multiplicativity

The “tensor product” of the “right B-module” idg: B — B and
the “left B-module” E — B is the space E.

ind-(C)
: _ o L(FE)on.
Sp4>/\f8+/\5p%5p

L(f)

Theorem

L(f)= Y inde(C)- L(fc)

fixed point
classes C

Also generalizes to compute R(f) in terms of R(f¢).



An easy route to nontrivial additivity

Work in yet another bicategory.

rings R, S <+— small categories A, B
R-S-bimodules «+— functors B°? x A — Spaces
ring map ¢: R—+S <— functor ¢: A— B
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small categories A, B
functors B°? x A — Spaces

functor ¢p: A— B
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The shadow of a category A is the disjoint union of all
endomorphisms in A, modulo “conjugacy”.

()= (H oma(a, a)) [(a8 ~ pa)

acA



An easy route to nontrivial additivity

Work in yet another bicategory.

rings R, S +—
R-S-bimodules +—
ringmap ¢p: R—> S <+—
—

(R

Definition

small categories A, B
functors B°? x A — Spaces

functor ¢p: A— B
77

The shadow of a category A is the disjoint union of all
endomorphisms in A, modulo “conjugacy”.

()= (H oma(a, a)) [(a8 ~ pa)

acA

In particular, {A) contains a class for each identity morphism [1,],
with [1,] = [1p] if and only if a = b.
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The refined Lefschetz number of a diagram

Let B = (a — b). Then (stabilizing)

(B)={[1a], [1s]}, A SP = SPV SP.

We can regard (A < M) as a functor B — Spaces, hence as
a “left B-module” M.

An h: M — M with f = h|4 gives a “module map” M — M.
M is dualizable if M and A are manifolds, and the trace of h is

[L(F),L(h)

5P\ SP N



The Reidemeister trace of a category

With B = (a — b) as before, we have a functor N: B’ — Spaces:

(a)
(b)

N *
N SP

This is dualizable as a “right B-module”, and its trace is

B

SP—= SPv SP



Nontrivial additivity

The “tensor product” of the “right B-module” A < M and the
“left B-module N is the quotient M/A.



Nontrivial additivity

The “tensor product” of the “right B-module” A < M and the
“left B-module N is the quotient M/A.

-1
1 L(f),L(h
L(g)

Theorem

L(g) = L(h) = L(f)



Euler characteristics of categories

Generalizes to colimits of other diagram shapes.

Example

e B a small "homotopically finite” category.
e The trivial left B-module has trace [1,1,...,1].

e The trivial right B-module has a trace that assigns a “weight”
k, to each isomorphism class of objects [1,].

e The tensor product of these modules is |NB|, and so
x(INBJ) Z ka

is the Euler characteristic of B (Leinster).



Conclusion

@ Addition and multiplication are both certain special cases of
linear combinations.

® “Sums” and “products’ of spaces are both certain kinds of
tensor product.

© Additivity and multiplicativity formulas for trace-like invariants
follow formally from these identifications.
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