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Counting fixed points

Let M be a manifold, f : M → M continuous.

Question

What is a good invariant of f that tells us about its fixed points?

First try

FP(f ) = the number of fixed points of f .

Problems with this:

1 It’s not very computable.

2 It’s not invariant under deformations.
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Counting with multiplicity

A better answer

Count them with multiplicity!

L(f ) =
∑

f (x)=x

indf (x)

where indf (x) is the index of x (a fixed point of f ).

1 This is more computable (as we will see).

2 It is also invariant under deformations.

This is the total fixed point index or the Lefschetz number of f .



Indices of fixed points

The index is like the “determinant” of the local behavior of f near
the fixed point.

index 1 index 1 index −1

Under a deformation:

• Two fixed points of index 1 can “merge” into one of index 2;

• Two fixed points of indices 1 and −1 can “annihilate”;

• etc. . .



The Lefschetz fixed-point theorem

Theorem

If L(f ) 6= 0, then f has a fixed point.

Proof.

Obvious!

The work is in finding a definition of L(f ) that we can calculate
without already knowing what the fixed points are.
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Computing the Lefschetz number

One option is:

Theorem

L(f ) =
∑
i∈Z

(−1)i tr(Hi (f ))

where Hi (f ) is the map induced by f on i th homology.

Example

L(idM) =
∑

i (−1)i dim(Hi (M)) = χ(M), the Euler characteristic.

Another option is to break down M into smaller pieces.
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Trivial additivity and multiplicativity

Theorem

For f : M → M and g : N → N, we have f q g : M q N → M q N.
Then

L(f q g) = L(f ) + L(g).
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For f : M → M and g : N → N, we have f × g : M ×N → M ×N.
Then

L(f × g) = L(f ) · L(g).
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Nontrivial additivity

Let A ⊆ M, and h : M → M with h(A) ⊆ A. Define
f = h|A : A→ A, and induce g : M/A→ M/A.

A //

f

��

M //

h

��

M/A

g

��
A // M // M/A

Theorem

L(h) = L(f ) + L(g).



Nontrivial multiplicativity

Let p : E → B be a fiber bundle with fiber F , and let f : E → E be
a map over f : B → B.

E
f //

p

��

E

p

��
B

f

// B

If b is a fixed point of f , we have fb : F → F .

Theorem

If E → B is “orientable” and B is connected, then

L(f ) = L(f ) · L(fb).



A nonorientable fibration

Let E = B = S1, with E → B the double cover. Let f be
reflection in the y -axis, and f some map over it.

E

B

Then L(fb) = 0 over one fixed point of f , but = 2 over the other.



Fixed-point classes

Definition

Fixed points b1 and b2 of f are in the same fixed-point class if
there is a path γ in B from b1 and b2, such that f (γ) can be
deformed back to γ keeping the endpoints fixed.

b1 b2

γ

f (γ)

Theorem

If b1 and b2 are in the same fixed-point class, then L(fb1) = L(fb2).



Nonorientable multiplicativity

Theorem (Ponto–S.)

L(f ) =
∑

fixed point
classes C

indf (C ) · L(fC )

• L(fC ) means L(fb) for any b ∈ C

• indf (C ) =
∑

b∈C indf (b)

Remark

If E → B is orientable and B is connected, all fixed-points are in
the same class C . Thus indf (C ) =

∑
f (b)=b indf (b) = L(f ), so

L(f ) = L(f ) · L(fb)
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Categorical traces

V a finite dim. vector space with basis {vi}, V ∗ = hom(V ,k) its
dual, f : V → V a linear map. The trace of f can be calculated by:

k
η // V ⊗ V ∗

f⊗id // V ⊗ V ∗
∼= // V ∗ ⊗ V

ε // k.

1
� //

∑
i vi ⊗ v∗i

� //
∑

ij aij vj ⊗ v∗i
� //

∑
ij v∗i ⊗ aij vj

� //
∑

ij aij v
∗
i (vj )

=
∑

i aii .

This is the definition of η. ε is evaluation of covectors.
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Geometrical traces

M ↪→ Rp a smooth manifold, TνM the one-point compactification
of its normal bundle, f : M → M continuous. Then

Sp
η // M+ ∧ Tν

f ∧id // M+ ∧ Tν
∼= // Tν ∧M+

ε // Sp.

has degree equal to the Lefschetz number of f .

“Pontryagin-Thom maps”
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Symmetric monoidal categories

Definition

A symmetric monoidal category is a category equipped with

• A “tensor product” of objects ⊗;

• A “unit object” I ;

• Natural isomorphisms M ⊗ (N ⊗ P) ∼= (M ⊗ N)⊗ P and
M ⊗ I ∼= M ∼= I ⊗M;

• Satisfying certain axioms.

Examples

1 Vector spaces with the usual tensor product, I = Z.

2 “Pointed, stable” spaces with the smash product, I = Sp.
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Spectra

By a “pointed, stable” space I really mean a spectrum, but here’s
all you need to know.

1 Any space M becomes pointed with a disjoint basepoint, M+.

2 Pointed spaces have a “smash product” ∧.

3 We have (M × N)+
∼= M+ ∧ N+.

4 “Stabilizing” allows us to smash by high-dimensional spheres
Sp “without changing anything”.



Duality and trace

Definition

In a symmetric monoidal category, a dualizable object is M with
M∗ and maps

I
η−→ M ⊗M∗ M∗ ⊗M

ε−→ I

satisfying axioms.

Definition

If M is dualizable, the trace of f : M → M is

I
η //

tr(f )

88M ⊗M∗
f⊗1 // M ⊗M∗

∼= // M∗ ⊗M
ε // I



Categorical trivial multiplicativity

Theorem (Easy)

If M and N are dualizable and M
f−→ M, N

g−→ N, then

I
tr(f ) //

tr(f⊗g)

<<I
tr(g) // I

Examples

1 For vector spaces, I is the ground field k, and composition of
linear maps k→ k is multiplication.

2 For pointed stable spaces, I is a big sphere Sp, and
composition of maps Sp → Sp multiplies their degrees.



Categorical trivial additivity

Theorem (Easy)

In a suitably “additive” context, we have

I

[
1
1

]
//

tr(f⊕g)

::I ⊕ I
[tr(f ),tr(g)] // I

Examples

1 For vector spaces, this is matrix multiplication:

[tr(f ), tr(g)] ·
[

1
1

]
= tr(f ) + tr(g)
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Categorical trivial additivity

Examples

2 For manifolds, we have

Sp

[
1
1

]
pinch

[L(f ), L(g)]

Sp ∨ Sp Sp



Categorical nontrivial additivity

Theorem (Not so easy) (May)

In a suitably “stable” context, for

A //

f

��

M //

h

��

M/A

g

��
A // M // M/A

we have

I

[
−1
1

]
//

tr(g)

::I ⊕ I
[tr(f ),tr(h)] // I



Arrow-theoretic nonorientable multiplicativity

L(f ) =
∑

fixed point
classes C

indf (C ) · L(fC )

Can be expressed as a composition:

Sn


...

indf (C)
...


//

L(f )

88
[...,L(fC ),... ] // Sn
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L(f ) =
∑

fixed point
classes C

indf (C ) · L(fC )

Can be expressed as a composition:

Sn


...

indf (C)
...


//

L(f )

77Λf B+ ∧ Sn
[...,L(fC ),... ] // Sn



The twisted free loop space

For f : B → B, we define

Λf B =
{
γ : [0, 1]→ B

∣∣∣ γ(0) = f (γ(1))
}

• If b is a fixed point, then the constant path cb lies in Λf B.

• Fixed points b1, b2 are in the same class exactly when cb1 and

cb2 lie in the same path-component of Λf B.
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The Hattori-Stallings trace

R a noncommutative ring, M ∼= Rn a finitely generated free right
R-module, f : M → M an R-map.

• Can give f a “matrix” (aij ), each aij ∈ R.

• Define tr(f ) =
∑

i aii ?

• This is not basis-invariant!

Definition

For an R-R-bimodule N, its shadow is 〈〈N〉〉= N
/
〈r · n = n · r〉.

Definition

The Hattori-Stallings trace of f is the image of
∑

i aii in 〈〈R〉〉.
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Categorical Hattori-Stallings

Our f.g. free right module M has a dual M∗ = homR(M,R), a left
R-module.

Z
η // M ⊗R M∗

f⊗id // M ⊗R M∗
?? // M∗ ⊗Z M

ε // R.

sends 1 ∈ Z to the Hattori-Stallings trace tr(f ) ∈ 〈〈R〉〉.
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R-module.

Z
η // M ⊗R M∗

f⊗id // M ⊗R M∗
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Generalization #1: twisted traces

φ : R → R a ring homomorphism, f : M → M a φ-equivariant map:

f (m · r) = f (m) · φ(r).

Then tr(f ) must take values in 〈〈Rφ〉〉= R
/
〈r · s = s · φ(r)〉.

Z
η // M ⊗R M∗

f⊗id // M ⊗Rφ M∗
∼= // 〈〈M∗ ⊗Z Mφ〉〉 ε // 〈〈Rφ〉〉.



Generalization #2: traces for bimodules

M an R-S-bimodule which is f.g. free as an S-module.
Then M∗ is an S-R-bimodule.

〈〈R〉〉 η // 〈〈M ⊗S M∗〉〉 f⊗id // 〈〈M ⊗S M∗〉〉
∼= // 〈〈M∗ ⊗R M〉〉 ε // 〈〈S〉〉.

sends each r ∈ 〈〈R〉〉 to the H-S trace of the S-module map

m 7→ r · f (m)



Generalization #3: twisted traces for bimodules

M an R-S-bimodule which is f.g. free as an S-module.
Let φ : R → R, ψ : S → S be ring homomorphisms, and let
f : M → M be φ-ψ-equivariant:

f (r ·m · s) = φ(r) · f (m) · ψ(s).

Then the trace

〈〈Rφ〉〉
η // 〈〈M ⊗Sψ M∗φ〉〉

f⊗id // 〈〈M ⊗Sψ M∗φ〉〉
∼= // 〈〈M∗ ⊗Rφ Mψ〉〉 ε // 〈〈Sψ〉〉.

is a map 〈〈Rφ〉〉→ 〈〈Sψ〉〉.



Bicategories

Definition

A bicategory is a structure B with

• “Objects” or “0-cells” A,B,C , . . . ;

• “Hom-categories” B(A,B), . . . ;

• “Composition” or “tensor product” functors

B(A,B)×B(B,C )
�−→ B(A,C )

• “Unit” objects UA ∈ B(A,A);

• Natural isomorphisms M � (N � P) ∼= (M � N)� P and
M � UB

∼= M ∼= UA �M;

• Satisfying certain axioms.

Example

Objects = rings, B(R,S) = the category of R-S-bimodules.



Shadows

Definition (Ponto)

A shadow on a bicategory B is a collection of functors

〈〈−〉〉: B(A,A)→ T

together with

• Isomorphisms 〈〈M � N〉〉∼= 〈〈N �M〉〉;
• Satisfying certain axioms.



Traces with shadows

Definition

An object M ∈ B(A,B) is dualizable if there is M∗ ∈ B(B,A) and
maps

UA
η−→ M �M∗ M∗ �M

ε−→ UB

satisfying axioms.

Definition

If M is dualizable, the trace of f : M → M is

〈〈UA〉〉
η //

tr(f )

44〈〈M �M∗〉〉 f⊗1 // 〈〈M �M∗〉〉
∼= // 〈〈M∗ �M〉〉 ε // 〈〈UB〉〉



Twisted traces

Definition

If M is dualizable, the trace of f : P �M → M � Q is

〈〈P〉〉 η //

tr(f )

55〈〈P M M∗〉〉 f⊗1 // 〈〈M Q M∗〉〉
∼= // 〈〈Q M∗M〉〉 ε // 〈〈Q〉〉

(Omitting the � symbols for space reasons.)



Bicategorical multiplicativity

Theorem (Easy)

If M and N are dualizable in a bicategory, and
f : P �M → M � Q and g : Q � N → N � R, then

〈〈P〉〉
tr(f ) //

tr(f⊗g)

99〈〈Q〉〉
tr(g) // 〈〈R〉〉

Corollary

For f a φ-ψ-equivariant map and g a ψ-χ-equivariant map,

〈〈Rφ〉〉
tr(f ) //

tr(f⊗g)

88
〈〈Sψ〉〉

tr(g) // 〈〈Tχ〉〉
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A different bicategory

We work in a bicategory of spaces and (pointed, stable) fibrations.

rings R, S ←→ spaces A, B
R-S-bimodules ←→ fibrations E → A× B

the integers Z ←→ the one-point space ?
right R-module ←→ fibration E → B

left R-module ←→ fibration E → B
ring map φ : R → S ←→ continuous map φ : A→ B

〈〈Rφ〉〉 ←→ twisted free loop space ΛφB

(This bicategory of spectra was constructed by May-Sigurdsson.)
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The refined fiberwise Lefschetz number

Let f : E → E be a map over f : B → B.

E
f //

p

��

E

p

��
B

f

// B

We can regard E → B as a “left B-module”, and f as an
“f -equivariant map.” It is dualizable if the fibers of p are
manifolds, and its trace is

Λf B+ ∧ Sp [...,L(fC ),... ]−−−−−−−→ Sp

Definition

This is the refined fiberwise Lefschetz number of f .



The Reidemeister trace

We can also regard idB : B → B as a “right B-module”, and f
itself as an “f -equivariant map”. It is dualizable if B is a manifold,
and its trace is

Sp


...

indf (C)
...


−−−−−−→ Λf B+ ∧ Sp

Definition

This (or its image in homology) is the Reidemeister trace R(f ).

(The Reidemeister trace is of independent interest; it refines L(f )
and supports a converse to the Lefschetz fixed point theorem.)
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Nonorientable multiplicativity

The “tensor product” of the “right B-module” idB : B → B and
the “left B-module” E → B is the space E .
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//

L(f )

77Λf B+ ∧ Sp
[...,L(fC ),... ] // Sp

Theorem

L(f ) =
∑

fixed point
classes C

indf (C ) · L(fC )

Also generalizes to compute R(f ) in terms of R(fC ).
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An easy route to nontrivial additivity

Work in yet another bicategory.

rings R, S ←→ small categories A, B
R-S-bimodules ←→ functors Bop × A→ Spaces

ring map φ : R → S ←→ functor φ : A→ B

〈〈R〉〉 ←→ ??

Definition

The shadow of a category A is the disjoint union of all
endomorphisms in A, modulo “conjugacy”.

〈〈A〉〉=

(∐
a∈A

homA(a, a)

)/
(αβ ∼ βα)

In particular, 〈〈A〉〉 contains a class for each identity morphism [1a],
with [1a] = [1b] if and only if a ∼= b.
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The refined Lefschetz number of a diagram

• Let B = (a→ b). Then (stabilizing)

〈〈B〉〉=
{

[1a], [1b]
}

+
∧ Sp ∼= Sp ∨ Sp.

• We can regard (A ↪→ M) as a functor B → Spaces, hence as
a “left B-module” M.

• An h : M → M with f = h|A gives a “module map” M → M.

• M is dualizable if M and A are manifolds, and the trace of h is

Sp ∨ Sp [L(f ),L(h)]−−−−−−→ Sp
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The Reidemeister trace of a category

With B = (a→ b) as before, we have a functor N : Bop → Spaces:

N(a) = ∗
N(b) = Sp

This is dualizable as a “right B-module”, and its trace is

Sp

[
−1
1

]
−−−→ Sp ∨ Sp



Nontrivial additivity

The “tensor product” of the “right B-module” A ↪→ M and the
“left B-module N is the quotient M/A.

Sp

[
−1
1

]
//

L(g)

77Sp ∨ Sp
[L(f ),L(h)] // Sp

Theorem

L(g) = L(h)− L(f )
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Euler characteristics of categories

Generalizes to colimits of other diagram shapes.

Example

• B a small “homotopically finite” category.

• The trivial left B-module has trace [1, 1, . . . , 1].

• The trivial right B-module has a trace that assigns a “weight”
ka to each isomorphism class of objects [1a].

• The tensor product of these modules is |NB|, and so

χ(|NB|) =
∑

a

ka

is the Euler characteristic of B (Leinster).



Conclusion

1 Addition and multiplication are both certain special cases of
linear combinations.

2 “Sums” and “products” of spaces are both certain kinds of
tensor product.

3 Additivity and multiplicativity formulas for trace-like invariants
follow formally from these identifications.
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