The additivity and multiplicativity of fixed-point invariants

Mike Shulman¹ Kate Ponto²

¹University of California, San Diego San Diego, California

> ²University of Kentucky Lexington, Kentucky

University of Glasgow 18 April 2012

1 Additivity and multiplicativity theorems

3 Bicategorical trace

4 Additivity and multiplicativity formulas

Let M be a manifold, $f: M \to M$ continuous.

Question

What is a good invariant of f that tells us about its fixed points?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let M be a manifold, $f: M \to M$ continuous.

Question

What is a good invariant of f that tells us about its fixed points?

First try

FP(f) = the number of fixed points of f.

Let M be a manifold, $f: M \rightarrow M$ continuous.

Question

What is a good invariant of f that tells us about its fixed points?

First try

FP(f) = the number of fixed points of f.

Problems with this:

- 1 It's not very computable.
- 2 It's not invariant under deformations.

A better answer

Count them with multiplicity!

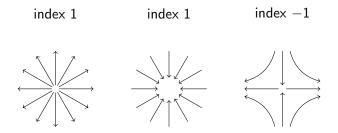
$$L(f) = \sum_{f(x)=x} \operatorname{ind}_f(x)$$

where $ind_f(x)$ is the index of x (a fixed point of f).

- 1 This is more computable (as we will see).
- 2 It is also invariant under deformations.

This is the total fixed point index or the Lefschetz number of f.

The index is like the "determinant" of the local behavior of f near the fixed point.



Under a deformation:

Two fixed points of index 1 can "merge" into one of index 2;

- Two fixed points of indices 1 and −1 can "annihilate";
- etc...

Theorem

If $L(f) \neq 0$, then f has a fixed point.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Proof.

Obvious!

Theorem

If $L(f) \neq 0$, then f has a fixed point.

Proof.

Obvious!

The work is in finding a definition of L(f) that we can calculate without already knowing what the fixed points are.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

One option is:

Theorem

$$L(f) = \sum_{i \in \mathbb{Z}} (-1)^i \operatorname{tr}(H_i(f))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $H_i(f)$ is the map induced by f on i^{th} homology.

One option is:

Theorem

$$L(f) = \sum_{i \in \mathbb{Z}} (-1)^i \operatorname{tr}(H_i(f))$$

where $H_i(f)$ is the map induced by f on i^{th} homology.

Example

 $L(\mathrm{id}_M) = \sum_i (-1)^i \dim(H_i(M)) = \chi(M)$, the Euler characteristic.

One option is:

Theorem

$$L(f) = \sum_{i \in \mathbb{Z}} (-1)^i \operatorname{tr}(H_i(f))$$

where $H_i(f)$ is the map induced by f on i^{th} homology.

Example

 $L(id_M) = \sum_i (-1)^i \dim(H_i(M)) = \chi(M)$, the Euler characteristic.

Another option is to break down *M* into smaller pieces.

Theorem

For $f: M \to M$ and $g: N \to N$, we have $f \amalg g: M \amalg N \to M \amalg N$. Then

 $L(f \amalg g) = L(f) + L(g).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

For $f: M \to M$ and $g: N \to N$, we have $f \amalg g: M \amalg N \to M \amalg N$. Then

$$L(f \amalg g) = L(f) + L(g).$$

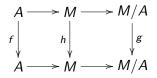
Theorem

For $f: M \to M$ and $g: N \to N$, we have $f \times g: M \times N \to M \times N$. Then

$$L(f \times g) = L(f) \cdot L(g).$$

Nontrivial additivity

Let $A \subseteq M$, and $h: M \to M$ with $h(A) \subseteq A$. Define $f = h|_A: A \to A$, and induce $g: M/A \to M/A$.



Theorem

L(h)=L(f)+L(g).

Nontrivial multiplicativity

Let $p: E \to B$ be a fiber bundle with fiber F, and let $f: E \to E$ be a map over $\overline{f}: B \to B$.

If b is a fixed point of \overline{f} , we have $f_b \colon F \to F$.

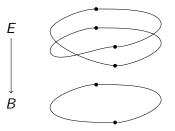
Theorem

If $E \rightarrow B$ is "orientable" and B is connected, then

 $L(f) = L(\overline{f}) \cdot L(f_b).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Let $E = B = S^1$, with $E \to B$ the double cover. Let \overline{f} be reflection in the *y*-axis, and *f* some map over it.

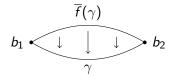


Then $L(f_b) = 0$ over one fixed point of \overline{f} , but = 2 over the other.

- 日本 - 4 日本 - 4 日本 - 日本

Definition

Fixed points b_1 and b_2 of \overline{f} are in the same fixed-point class if there is a path γ in B from b_1 and b_2 , such that $\overline{f}(\gamma)$ can be deformed back to γ keeping the endpoints fixed.



Theorem

If b_1 and b_2 are in the same fixed-point class, then $L(f_{b_1}) = L(f_{b_2})$.

Nonorientable multiplicativity

Theorem (Ponto-S.)

$$L(f) = \sum_{\substack{\text{fixed point} \\ \text{classes } C}} \operatorname{ind}_{\overline{f}}(C) \cdot L(f_C)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- $L(f_C)$ means $L(f_b)$ for any $b \in C$
- $\operatorname{ind}_{\overline{f}}(C) = \sum_{b \in C} \operatorname{ind}_{\overline{f}}(b)$

Nonorientable multiplicativity

Theorem (Ponto-S.)

$$L(f) = \sum_{\substack{\text{fixed point} \\ \text{classes } C}} \operatorname{ind}_{\overline{f}}(C) \cdot L(f_C)$$

•
$$L(f_C)$$
 means $L(f_b)$ for any $b \in C$

•
$$\operatorname{ind}_{\overline{f}}(C) = \sum_{b \in C} \operatorname{ind}_{\overline{f}}(b)$$

Remark

If $E \to B$ is orientable and B is connected, all fixed-points are in the same class C. Thus $\operatorname{ind}_{\overline{f}}(C) = \sum_{f(b)=b} \operatorname{ind}_{\overline{f}}(b) = L(\overline{f})$, so

$$L(f) = L(\overline{f}) \cdot L(f_b)$$

1 Additivity and multiplicativity theorems

3 Bicategorical trace

4 Additivity and multiplicativity formulas

V a finite dim. vector space with basis $\{v_i\}$, $V^* = hom(V, \mathbb{k})$ its dual, $f: V \to V$ a linear map. The trace of *f* can be calculated by:

$$\Bbbk \xrightarrow{\eta} V \otimes V^* \xrightarrow{f \otimes \mathsf{id}} V \otimes V^* \xrightarrow{\cong} V^* \otimes V \xrightarrow{\epsilon} \Bbbk.$$

 $1 \longmapsto \sum_{i} v_i \otimes v_i^* \longmapsto \sum_{ij} a_{ij} v_j \otimes v_i^* \longmapsto \sum_{ij} v_i^* \otimes a_{ij} v_j \longmapsto \sum_{ij} a_{ij} v_i^* (v_j)$

 $=\sum_{i}a_{ii}$.

V a finite dim. vector space with basis $\{v_i\}$, $V^* = hom(V, \Bbbk)$ its dual, $f: V \to V$ a linear map. The trace of *f* can be calculated by:

$$\Bbbk \xrightarrow{\eta} V \otimes V^* \xrightarrow{f \otimes \mathsf{id}} V \otimes V^* \xrightarrow{\cong} V^* \otimes V \xrightarrow{\epsilon} \Bbbk.$$

$$1 \longmapsto \sum_{i} v_{i} \otimes v_{i}^{*} \longmapsto \sum_{ij} a_{ij} v_{j} \otimes v_{i}^{*} \longmapsto \sum_{ij} v_{i}^{*} \otimes a_{ij} v_{j} \longmapsto \sum_{ij} a_{ij} v_{i}^{*} (v_{j})$$
$$= \sum_{i} a_{ii}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

This is the definition of η .

V a finite dim. vector space with basis $\{v_i\}$, $V^* = hom(V, \Bbbk)$ its dual, $f: V \to V$ a linear map. The trace of *f* can be calculated by:

$$\mathbb{k} \xrightarrow{\eta} V \otimes V^* \xrightarrow{f \otimes \mathrm{id}} V \otimes V^* \xrightarrow{\cong} V^* \otimes V \xrightarrow{\epsilon} \mathbb{k}.$$

$$1 \longmapsto \sum_i v_i \otimes v_i^* \longmapsto \sum_{ij} a_{ij} v_j \otimes v_i^* \longmapsto \sum_{ij} v_i^* \otimes a_{ij} v_j \longmapsto \sum_{ij} a_{ij} v_i^* (v_j)$$

This is the definition of η .

 ϵ is evaluation of covectors.

 $=\sum_{i}a_{ii}.$

 $M \hookrightarrow \mathbb{R}^p$ a smooth manifold, $T\nu_M$ the one-point compactification of its normal bundle, $f: M \to M$ continuous. Then

$$S^{p} \xrightarrow{\eta} M_{+} \land T\nu \xrightarrow{f \land \mathsf{id}} M_{+} \land T\nu \xrightarrow{\cong} T\nu \land M_{+} \xrightarrow{\epsilon} S^{p}$$

has degree equal to the Lefschetz number of f.

 $M \hookrightarrow \mathbb{R}^p$ a smooth manifold, $T\nu_M$ the one-point compactification of its normal bundle, $f: M \to M$ continuous. Then

$$S^{p} \xrightarrow{\eta} M_{+} \wedge T\nu \xrightarrow{f \wedge \text{id}} M_{+} \wedge T\nu \xrightarrow{\cong} T\nu \wedge M_{+} \xrightarrow{\epsilon} S^{p}.$$

has degree equal to the Lefschetz number of f .
"Pontryagin-Thom maps"

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Symmetric monoidal categories

Definition

A symmetric monoidal category is a category equipped with

- A "tensor product" of objects \otimes ;
- A "unit object" *I*;
- Natural isomorphisms M ⊗ (N ⊗ P) ≅ (M ⊗ N) ⊗ P and M ⊗ I ≅ M ≅ I ⊗ M;

• Satisfying certain axioms.

Symmetric monoidal categories

Definition

A symmetric monoidal category is a category equipped with

- A "tensor product" of objects \otimes ;
- A "unit object" *I*;
- Natural isomorphisms M ⊗ (N ⊗ P) ≅ (M ⊗ N) ⊗ P and M ⊗ I ≅ M ≅ I ⊗ M;
- Satisfying certain axioms.

Examples

- **1** Vector spaces with the usual tensor product, $I = \mathbb{Z}$.
- **2** "Pointed, stable" spaces with the smash product, $I = S^{p}$.

By a "pointed, stable" space I really mean a spectrum, but here's all you need to know.

- **1** Any space M becomes pointed with a disjoint basepoint, M_+ .
- **2** Pointed spaces have a "smash product" \wedge .
- 3 We have $(M \times N)_+ \cong M_+ \wedge N_+$.
- "Stabilizing" allows us to smash by high-dimensional spheres S^p "without changing anything".

Definition

In a symmetric monoidal category, a dualizable object is M with M^* and maps

$$I \xrightarrow{\eta} M \otimes M^* \qquad M^* \otimes M \xrightarrow{\varepsilon} I$$

satisfying axioms.

Definition

If M is dualizable, the trace of $f: M \to M$ is

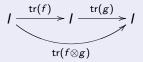
$$I \xrightarrow{\eta} M \otimes M^* \xrightarrow{f \otimes 1} M \otimes M^* \xrightarrow{\cong} M^* \otimes M \xrightarrow{\varepsilon} I$$

tr(f)

Categorical trivial multiplicativity

Theorem (Easy)

If M and N are dualizable and $M \xrightarrow{f} M$, $N \xrightarrow{g} N$, then



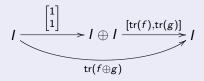
Examples

- For vector spaces, *I* is the ground field k, and composition of linear maps k → k is multiplication.
- **2** For pointed stable spaces, *I* is a big sphere S^p , and composition of maps $S^p \rightarrow S^p$ multiplies their degrees.

Categorical trivial additivity

Theorem (Easy)

In a suitably "additive" context, we have

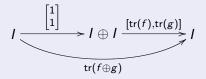


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Categorical trivial additivity

Theorem (Easy)

In a suitably "additive" context, we have



Examples

• For vector spaces, this is matrix multiplication:

$$[\operatorname{tr}(f),\operatorname{tr}(g)] \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \operatorname{tr}(f) + \operatorname{tr}(g)$$

Categorical trivial additivity

Examples

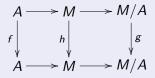
Ø For manifolds, we have



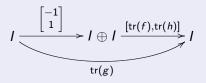
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Not so easy) (May)

In a suitably "stable" context, for



we have



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Arrow-theoretic nonorientable multiplicativity

 $L(f) = \sum \operatorname{ind}_{\overline{f}}(C) \cdot L(f_C)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

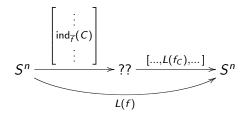
fixed point classes C

Arrow-theoretic nonorientable multiplicativity

$$L(f) = \sum_{\text{fixed point}} \operatorname{ind}_{\overline{f}}(C) \cdot L(f_C)$$

classes C

Can be expressed as a composition:



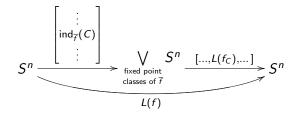
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Arrow-theoretic nonorientable multiplicativity

$$L(f) = \sum_{\text{find exist}} \operatorname{ind}_{\overline{f}}(C) \cdot L(f_C)$$

classes C

Can be expressed as a composition:

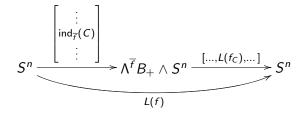


Arrow-theoretic nonorientable multiplicativity

$$L(f) = \sum_{\text{find exist}} \operatorname{ind}_{\overline{f}}(C) \cdot L(f_C)$$

classes C

Can be expressed as a composition:



For $\overline{f}: B \to B$, we define

$$\boldsymbol{\Lambda}^{\overline{f}}\boldsymbol{B} = \left\{ \gamma \colon [0,1] \to \boldsymbol{B} \mid \gamma(0) = \overline{f}(\gamma(1)) \right\}$$

For $\overline{f}: B \to B$, we define

$$\Lambda^{\overline{f}}B = \left\{\gamma \colon [0,1] \to B \mid \gamma(0) = \overline{f}(\gamma(1))\right\}$$

- If b is a fixed point, then the constant path c_b lies in $\Lambda^f B$.
- Fixed points b_1 , b_2 are in the same class exactly when c_{b_1} and c_{b_2} lie in the same path-component of $\Lambda^{\overline{f}}B$.

1 Additivity and multiplicativity theorems

3 Bicategorical trace

4 Additivity and multiplicativity formulas

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Can give f a "matrix" (a_{ij}) , each $a_{ij} \in R$.
- Define $\operatorname{tr}(f) = \sum_{i} a_{ii}$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Can give f a "matrix" (a_{ij}) , each $a_{ij} \in R$.
- Define $tr(f) = \sum_{i} a_{ii}$?
- This is not basis-invariant!

- Can give f a "matrix" (a_{ij}) , each $a_{ij} \in R$.
- Define $tr(f) = \sum_{i} a_{ii}$?
- This is not basis-invariant!

Definition

For an *R*-*R*-bimodule *N*, its shadow is $\langle\!\langle N \rangle\!\rangle = N / \langle r \cdot n = n \cdot r \rangle$.

- Can give f a "matrix" (a_{ij}) , each $a_{ij} \in R$.
- Define $tr(f) = \sum_{i} a_{ii}$?
- This is not basis-invariant!

Definition

For an *R*-*R*-bimodule *N*, its shadow is $\langle\!\langle N \rangle\!\rangle = N / \langle r \cdot n = n \cdot r \rangle$.

Definition

The Hattori-Stallings trace of f is the image of $\sum_{i} a_{ii}$ in $\langle\!\langle R \rangle\!\rangle$.

Our f.g. free right module M has a dual $M^* = \hom_R(M, R)$, a left R-module.

$$\mathbb{Z} \xrightarrow{\eta} M \otimes_R M^* \xrightarrow{f \otimes \mathsf{id}} M \otimes_R M^* \xrightarrow{??} M^* \otimes_{\mathbb{Z}} M \xrightarrow{\epsilon} R.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Our f.g. free right module M has a dual $M^* = \hom_R(M, R)$, a left R-module.

$$\mathbb{Z} \xrightarrow{\eta} M \otimes_R M^* \xrightarrow{f \otimes \mathsf{id}} M \otimes_R M^* \xrightarrow{\cong} \langle\!\langle M^* \otimes_{\mathbb{Z}} M \rangle\!\rangle \xrightarrow{\epsilon} \langle\!\langle R \rangle\!\rangle.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

sends $1 \in \mathbb{Z}$ to the Hattori-Stallings trace $tr(f) \in \langle\!\!\langle R \rangle\!\!\rangle$.

 $\phi \colon R \to R$ a ring homomorphism, $f \colon M \to M$ a ϕ -equivariant map:

$$f(m \cdot r) = f(m) \cdot \phi(r).$$

Then tr(f) must take values in $\langle\!\langle R_{\phi} \rangle\!\rangle = R / \langle r \cdot s = s \cdot \phi(r) \rangle$.

$$\mathbb{Z} \xrightarrow{\eta} M \otimes_R M^* \xrightarrow{f \otimes \mathsf{id}} M \otimes_{R_{\phi}} M^* \xrightarrow{\cong} \langle\!\langle M^* \otimes_{\mathbb{Z}} M_{\phi} \rangle\!\rangle \xrightarrow{\epsilon} \langle\!\langle R_{\phi} \rangle\!\rangle.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

M an *R*-*S*-bimodule which is f.g. free as an *S*-module. Then M^* is an *S*-*R*-bimodule.

$$\langle\!\langle R \rangle\!\rangle \xrightarrow{\eta} \langle\!\langle M \otimes_S M^* \rangle\!\rangle \xrightarrow{f \otimes \mathsf{id}} \langle\!\langle M \otimes_S M^* \rangle\!\rangle \xrightarrow{\cong} \langle\!\langle M^* \otimes_R M \rangle\!\rangle \xrightarrow{\epsilon} \langle\!\langle S \rangle\!\rangle.$$

sends each $r \in \langle\!\langle R \rangle\!\rangle$ to the H-S trace of the S-module map

 $m \mapsto r \cdot f(m)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

M an *R*-*S*-bimodule which is f.g. free as an *S*-module. Let $\phi: R \to R, \psi: S \to S$ be ring homomorphisms, and let $f: M \to M$ be ϕ - ψ -equivariant:

$$f(r \cdot m \cdot s) = \phi(r) \cdot f(m) \cdot \psi(s).$$

Then the trace

$$\langle\!\langle R_{\phi} \rangle\!\rangle \xrightarrow{\eta} \langle\!\langle M \otimes_{S_{\psi}} M_{\phi}^{*} \rangle\!\rangle \xrightarrow{f \otimes \mathrm{id}} \langle\!\langle M \otimes_{S_{\psi}} M_{\phi}^{*} \rangle\!\rangle \xrightarrow{\cong} \langle\!\langle M^{*} \otimes_{R_{\phi}} M_{\psi} \rangle\!\rangle \xrightarrow{\epsilon} \langle\!\langle S_{\psi} \rangle\!\rangle.$$

is a map $\langle\!\langle R_{\phi} \rangle\!\rangle \to \langle\!\langle S_{\psi} \rangle\!\rangle.$

Bicategories

Definition

A bicategory is a structure ${\mathscr B}$ with

- "Objects" or "0-cells" *A*, *B*, *C*,...;
- "Hom-categories" B(A, B), ...;
- "Composition" or "tensor product" functors

$$\mathscr{B}(A,B) imes \mathscr{B}(B,C) \xrightarrow{\odot} \mathscr{B}(A,C)$$

▲口 → ▲圖 → ▲ 臣 → ▲ 臣 → □ 臣 □

- "Unit" objects $U_A \in \mathscr{B}(A, A)$;
- Natural isomorphisms $M \odot (N \odot P) \cong (M \odot N) \odot P$ and $M \odot U_B \cong M \cong U_A \odot M$;
- Satisfying certain axioms.

Example

Objects = rings, $\mathscr{B}(R, S)$ = the category of *R*-*S*-bimodules.

Definition (Ponto)

A shadow on a bicategory ${\mathscr B}$ is a collection of functors

$$\langle\!\!\langle - \rangle\!\!\rangle : \mathscr{B}(A, A) \to \mathscr{T}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

together with

- Isomorphisms $\langle\!\langle M \odot N \rangle\!\rangle \cong \langle\!\langle N \odot M \rangle\!\rangle$;
- Satisfying certain axioms.

Definition

An object $M \in \mathscr{B}(A, B)$ is dualizable if there is $M^* \in \mathscr{B}(B, A)$ and maps

$$U_A \xrightarrow{\eta} M \odot M^* \qquad M^* \odot M \xrightarrow{\varepsilon} U_B$$

satisfying axioms.

Definition

If M is dualizable, the trace of $f: M \to M$ is

$$\langle\!\langle U_A \rangle\!\rangle \xrightarrow{\eta} \langle\!\langle M \odot M^* \rangle\!\rangle \xrightarrow{f \otimes 1} \langle\!\langle M \odot M^* \rangle\!\rangle \xrightarrow{\cong} \langle\!\langle M^* \odot M \rangle\!\rangle \xrightarrow{\varepsilon} \langle\!\langle U_B \rangle\!\rangle$$

tr(f)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

If *M* is dualizable, the trace of $f: P \odot M \to M \odot Q$ is

$$\langle\!\langle P \rangle\!\rangle \xrightarrow{\eta} \langle\!\langle P M M^* \rangle\!\rangle \xrightarrow{f \otimes 1} \langle\!\langle M Q M^* \rangle\!\rangle \xrightarrow{\cong} \langle\!\langle Q M^* M \rangle\!\rangle \xrightarrow{\varepsilon} \langle\!\langle Q \rangle\!\rangle$$
$$tr(f)$$

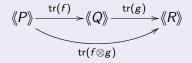
▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

(Omitting the \odot symbols for space reasons.)

Bicategorical multiplicativity

Theorem (Easy)

If M and N are dualizable in a bicategory, and $f: P \odot M \rightarrow M \odot Q$ and $g: Q \odot N \rightarrow N \odot R$, then



▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

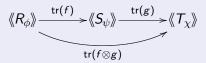
Bicategorical multiplicativity

Theorem (Easy)

If M and N are dualizable in a bicategory, and $f: P \odot M \rightarrow M \odot Q$ and $g: Q \odot N \rightarrow N \odot R$, then

Corollary

For f a ϕ - ψ -equivariant map and g a ψ - χ -equivariant map,



1 Additivity and multiplicativity theorems

4 Additivity and multiplicativity formulas

▲□▶ <圖▶ < ≧▶ < ≧▶ = のQ@</p>

rings $R, S \leftrightarrow$ spaces A, BR-S-bimodules \leftrightarrow fibrations $E \rightarrow A \times B$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- rings R, S \leftrightarrow spaces A, B
- *R*-*S*-bimodules \longleftrightarrow fibrations $E \rightarrow A \times B$
- the integers $\mathbb{Z} \iff$ the one-point space \star

- right *R*-module \longleftrightarrow fibration $E \rightarrow B$
- - left *R*-module \longleftrightarrow fibration $E \rightarrow B$

- rings R, S \leftrightarrow spaces A, B
- *R*-*S*-bimodules \longleftrightarrow fibrations $E \rightarrow A \times B$
- the integers $\mathbb{Z} \iff$ the one-point space \star
- right *R*-module \longleftrightarrow fibration $E \rightarrow B$
 - left *R*-module \longleftrightarrow fibration $E \rightarrow B$

ring map $\phi: R \to S \iff$ continuous map $\phi: A \to B$

- rings R, S \leftrightarrow spaces A, B
- *R*-*S*-bimodules \longleftrightarrow fibrations $E \rightarrow A \times B$

- the integers $\mathbb{Z} \iff$ the one-point space \star
- right *R*-module \longleftrightarrow fibration $E \rightarrow B$
 - left *R*-module \longleftrightarrow fibration $E \rightarrow B$
- ring map $\phi: R \to S \iff$ continuous map $\phi: A \to B$
 - $\langle\!\langle R_{\phi} \rangle\!\rangle \longleftrightarrow$ twisted free loop space $\Lambda^{\phi} B$

rings <i>R</i> , <i>S</i>	\longleftrightarrow	spaces A, B
<i>R-S</i> -bimodules	\longleftrightarrow	fibrations $E ightarrow A imes B$
the integers $\mathbb Z$	\longleftrightarrow	the one-point space \star
right <i>R</i> -module	\longleftrightarrow	fibration $E ightarrow B$
left <i>R</i> -module	\longleftrightarrow	fibration $E ightarrow B$
ring map $\phi \colon R \to S$	\longleftrightarrow	continuous map $\phi \colon \mathcal{A} o \mathcal{B}$
$\langle\!\!\langle R_\phi angle\! angle$	\longleftrightarrow	twisted free loop space $\Lambda^{\phi}B$

(This bicategory of spectra was constructed by May-Sigurdsson.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The refined fiberwise Lefschetz number

Let $f: E \to E$ be a map over $\overline{f}: B \to B$.

We can regard $E \rightarrow B$ as a "left *B*-module", and *f* as an " \overline{f} -equivariant map." It is dualizable if the fibers of *p* are manifolds, and its trace is

$$\Lambda^{\overline{f}}B_+ \wedge S^p \xrightarrow{[\dots, L(f_C), \dots]} S^p$$

Definition

This is the refined fiberwise Lefschetz number of f.

We can also regard $id_B \colon B \to B$ as a "right *B*-module", and \overline{f} itself as an " \overline{f} -equivariant map". It is dualizable if *B* is a manifold, and its trace is

$$S^{p} \xrightarrow{\begin{bmatrix} \vdots \\ \operatorname{ind}_{\overline{f}}(C) \\ \vdots \end{bmatrix}} \Lambda^{\overline{f}} B_{+} \wedge S^{p}$$

Definition

This (or its image in homology) is the Reidemeister trace $R(\overline{f})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We can also regard $id_B \colon B \to B$ as a "right *B*-module", and \overline{f} itself as an " \overline{f} -equivariant map". It is dualizable if *B* is a manifold, and its trace is

$$S^{p} \xrightarrow{\begin{bmatrix} \vdots \\ \operatorname{ind}_{\overline{f}}(C) \\ \vdots \end{bmatrix}} \Lambda^{\overline{f}} B_{+} \wedge S^{p}$$

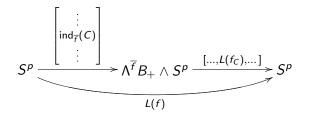
Definition

This (or its image in homology) is the Reidemeister trace $R(\overline{f})$.

(The Reidemeister trace is of independent interest; it refines $L(\overline{f})$ and supports a converse to the Lefschetz fixed point theorem.)

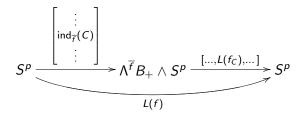
Nonorientable multiplicativity

The "tensor product" of the "right *B*-module" $id_B : B \to B$ and the "left *B*-module" $E \to B$ is the space *E*.



Nonorientable multiplicativity

The "tensor product" of the "right *B*-module" $id_B : B \to B$ and the "left *B*-module" $E \to B$ is the space *E*.



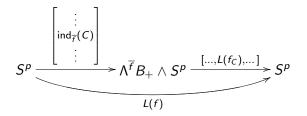
Theorem

$$L(f) = \sum \operatorname{ind}_{\overline{f}}(C) \cdot L(f_C)$$

fixed point classes C

Nonorientable multiplicativity

The "tensor product" of the "right *B*-module" $id_B : B \to B$ and the "left *B*-module" $E \to B$ is the space *E*.



Theorem

$$L(f) = \sum_{\substack{\text{fixed point} \\ \text{classes } C}} \operatorname{ind}_{\overline{f}}(C) \cdot L(f_C)$$

Also generalizes to compute R(f) in terms of $R(f_C)$.

An easy route to nontrivial additivity

Work in yet another bicategory.

 $\begin{array}{rcl} \text{rings } R, \ S & \longleftrightarrow & \text{small categories } A, \ B \\ R\text{-}S\text{-bimodules} & \longleftrightarrow & \text{functors } B^{op} \times A \to \text{Spaces} \\ \text{ring map } \phi: \ R \to S & \longleftrightarrow & \text{functor } \phi: \ A \to B \end{array}$

・ロト・日本・モート モー うへぐ

An easy route to nontrivial additivity

Work in yet another bicategory.

$$\begin{array}{rccc} \text{rings } R, \ S & \longleftrightarrow & \text{small categories } A, \ B \\ R\text{-}S\text{-bimodules} & \longleftrightarrow & \text{functors } B^{op} \times A \to \text{Spaces} \\ \text{ring map } \phi \colon R \to S & \longleftrightarrow & \text{functor } \phi \colon A \to B \\ & & \langle\!\langle R \rangle\!\rangle & \longleftrightarrow & ?? \end{array}$$

Definition

The shadow of a category A is the disjoint union of all endomorphisms in A, modulo "conjugacy".

$$\langle\!\langle A \rangle\!\rangle = \left(\prod_{a \in A} \hom_A(a, a) \right) / (\alpha \beta \sim \beta \alpha)$$

An easy route to nontrivial additivity

Work in yet another bicategory.

$$\begin{array}{rcl} \text{rings } R, \ S & \longleftrightarrow & \text{small categories } A, \ B \\ R\text{-}S\text{-bimodules} & \longleftrightarrow & \text{functors } B^{op} \times A \to \text{Spaces} \\ \text{ring map } \phi \colon R \to S & \longleftrightarrow & \text{functor } \phi \colon A \to B \\ & \langle\!\langle R \rangle\!\rangle & \longleftrightarrow & ?? \end{array}$$

Definition

The shadow of a category A is the disjoint union of all endomorphisms in A, modulo "conjugacy".

$$\langle\!\langle A \rangle\!\rangle = \left(\prod_{a \in A} \hom_A(a, a) \right) / (\alpha \beta \sim \beta \alpha)$$

In particular, $\langle\!\langle A \rangle\!\rangle$ contains a class for each identity morphism $[1_a]$, with $[1_a] = [1_b]$ if and only if $a \cong b$.

The refined Lefschetz number of a diagram

• Let
$$B = (a \rightarrow b)$$
. Then (stabilizing)

$$\langle\!\langle B \rangle\!\rangle = \{[1_a], [1_b]\}_+ \wedge S^p \cong S^p \vee S^p.$$

The refined Lefschetz number of a diagram

• Let $B = (a \rightarrow b)$. Then (stabilizing)

$$\langle\!\langle B \rangle\!\rangle = \{[1_a], [1_b]\}_+ \wedge S^p \cong S^p \vee S^p.$$

- We can regard $(A \hookrightarrow M)$ as a functor $B \to$ Spaces, hence as a "left *B*-module" *M*.
- An $h: M \to M$ with $f = h|_A$ gives a "module map" $M \to M$.

(日) (日) (日) (日) (日) (日) (日) (日)

The refined Lefschetz number of a diagram

• Let $B = (a \rightarrow b)$. Then (stabilizing)

$$\langle\!\langle B \rangle\!\rangle = \{[1_a], [1_b]\}_+ \wedge S^p \cong S^p \vee S^p.$$

- We can regard $(A \hookrightarrow M)$ as a functor $B \to$ Spaces, hence as a "left *B*-module" *M*.
- An $h: M \to M$ with $f = h|_A$ gives a "module map" $M \to M$.
- *M* is dualizable if *M* and *A* are manifolds, and the trace of *h* is

$$S^p \vee S^p \xrightarrow{[L(f),L(h)]} S^p$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

With $B = (a \rightarrow b)$ as before, we have a functor $N \colon B^{op} \rightarrow$ Spaces:

$$N(a) = *$$

 $N(b) = S^{p}$

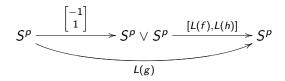
This is dualizable as a "right B-module", and its trace is

$$S^p \xrightarrow{\begin{bmatrix} -1\\ 1 \end{bmatrix}} S^p \vee S^p$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Nontrivial additivity

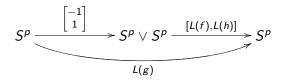
The "tensor product" of the "right *B*-module" $A \hookrightarrow M$ and the "left *B*-module *N* is the quotient M/A.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Nontrivial additivity

The "tensor product" of the "right *B*-module" $A \hookrightarrow M$ and the "left *B*-module *N* is the quotient M/A.



Theorem

$$L(g) = L(h) - L(f)$$

Generalizes to colimits of other diagram shapes.

Example

- *B* a small "homotopically finite" category.
- The trivial left *B*-module has trace [1, 1, ..., 1].
- The trivial right *B*-module has a trace that assigns a "weight" k_a to each isomorphism class of objects $[1_a]$.
- The tensor product of these modules is |NB|, and so

$$\chi(|\mathsf{NB}|) = \sum_{\mathsf{a}} k_{\mathsf{a}}$$

is the Euler characteristic of B (Leinster).

- Addition and multiplication are both certain special cases of linear combinations.
- Sums" and "products" of spaces are both certain kinds of tensor product.
- 3 Additivity and multiplicativity formulas for trace-like invariants follow formally from these identifications.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ