Euler characteristics of colimits

Mike Shulman¹ Kate Ponto²

¹University of California, San Diego San Diego, California

> ²University of Kentucky Lexington, Kentucky

PSSL 93 Cambridge, UK April 14, 2012

1 Background

- 2 Symmetric monoidal traces
- **3** Bicategorical traces

4 Traces for enriched modules

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 < つ < ご

Let **A** be a finite category and $X : \mathbf{A} \to \mathbf{FinSet}$ a functor.

Question

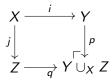
When can the cardinality of colim X be calculated from cardinality information about X?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For finite sets X and Y, we have

 $|X \sqcup Y| = |X| + |Y|$

For a pushout diagram of finite sets



if i and j are injections, then

$$|Y \cup_X Z| = |Y| + |Z| - |X|$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For an action of a finite group G on a finite set X, if the action is free, then

$$\left|X/G\right| = \frac{|X|}{|G|}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition

A weighting on a finite category **A** is a function

 $k^{(-)} \colon \mathsf{ob}(\mathsf{A}) o \mathbb{Q}$

such that ...

Theorem (Leinster)

If **A** admits a weighting and $X : \mathbf{A} \to \mathbf{FinSet}$ is a coproduct of representables, then

$$\left|\operatorname{colim} X\right| = \sum_{a \in \mathbf{A}} k^{a} |X(a)|.$$

Definition

A weighting on a finite category **A** is a function

 $k^{(-)}$: ob(**A**) $ightarrow \mathbb{Q}$

such that ...

Theorem (Leinster)

If **A** admits a weighting and $X : \mathbf{A} \to \mathbf{FinSet}$ is a coproduct of representables, then

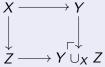
$$\left|\operatorname{colim} X\right| = \sum_{a \in \mathbf{A}} k^{a} |X(a)|.$$

What about more general diagrams?

Regard a finite set as a 0-dimensional manifold. Then its cardinality is equal to its Euler characteristic.

Theorem

For any homotopy pushout square of spaces with Euler characteristic:



we have

$$\chi(Y \cup_X Z) = \chi(Y) + \chi(Z) - \chi(X)$$

Theorem (Cauchy, Frobenius)

For any action of a finite group G on a finite set X, we have

$$\left|X/G\right| = \frac{1}{|G|} \sum_{g \in G} \left|X^g\right|$$

where $X^{g} = \{ x \in X \mid g \cdot x = x \}.$

If the action is free, then $X^e = X$ and $X^g = \emptyset$ for $g \neq e$.

1 Background

2 Symmetric monoidal traces

3 Bicategorical traces

4 Traces for enriched modules

Definition

An object X of a closed symmetric monoidal category \mathscr{V} is dualizable if we have X^* with maps

$$I \xrightarrow{\eta} X \otimes X^* \qquad X^* \otimes X \xrightarrow{\varepsilon} I$$

satisfying the triangle identities.

Definition

An object X of a closed symmetric monoidal category \mathscr{V} is dualizable if we have X^* with maps

$$I \xrightarrow{\eta} X \otimes X^* \qquad X^* \otimes X \xrightarrow{\varepsilon} I$$

satisfying the triangle identities.

Definition

If X is dualizable and $f: X \to X$, the trace of f is

$$I \xrightarrow{\eta} X \otimes X^* \xrightarrow{f \otimes 1} X \otimes X^* \xrightarrow{\cong} X^* \otimes X \xrightarrow{\varepsilon} I$$

The Euler characteristic of X is $\chi(X) = tr(1_X)$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Euler characteristics of finite sets

In $(\textbf{FinSet},\times,1)$ not many objects are dualizable, but we can apply a monoidal functor

$$\Sigma \colon (\textbf{FinSet}, \times, 1) \to (\mathscr{V}, \otimes, \textit{I})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

which preserves some colimits, and calculate traces in $\mathscr V.$

Euler characteristics of finite sets

In $(\textbf{FinSet},\times,1)$ not many objects are dualizable, but we can apply a monoidal functor

$$\Sigma \colon (\textbf{FinSet}, \times, 1) \to (\mathscr{V}, \otimes, I)$$

which preserves some colimits, and calculate traces in $\mathscr V.$

Examples

• $\mathscr{V} = \mathbf{Vect}$, $\Sigma X =$ the free vector space on X.

$$\chi(\Sigma X) = \dim(\Sigma X) = |X|.$$

Euler characteristics of finite sets

In $(\textbf{FinSet},\times,1)$ not many objects are dualizable, but we can apply a monoidal functor

$$\Sigma \colon (\mathsf{FinSet}, \times, 1) \to (\mathscr{V}, \otimes, I)$$

which preserves some colimits, and calculate traces in $\mathscr V.$

Examples

• $\mathscr{V} = \mathbf{Vect}$, $\Sigma X =$ the free vector space on X.

$$\chi(\Sigma X) = \dim(\Sigma X) = |X|.$$

• \mathscr{V} = the stable homotopy category, ΣX = the suspension spectrum of X_+ .

$$\chi(\Sigma X) = |X|.$$

1) If \mathscr{V} is additive, then

$$\chi(X\oplus Y)=\chi(X)+\chi(Y)$$

2 (J.P. May) If \mathscr{V} is triangulated, then

$$\chi(Y \cup_X Z) = \chi(Y) + \chi(Z) - \chi(X).$$

3 (Induced character) If \mathscr{V} is additive and |G|-divisible, then

$$\chi(X/G) = \frac{1}{|G|} \sum_{g \in G} \operatorname{tr}_X(g).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(And similarly for traces of other endomorphisms.)

A more refined question

Suppose:

- $\mathscr V$ is closed symmetric monoidal and cocomplete.
- A is a small 𝒱-category
- $\Phi: \mathbf{A}^{op} \to \mathscr{V}$ is a \mathscr{V} -functor (a "weight")
- $X : \mathbf{A} \to \mathscr{V}$ is a \mathscr{V} -functor with each X(a) dualizable.

Questions

- **1** When does it follow that $\operatorname{colim}^{\Phi} X$ is dualizable?
- **2** Can we calculate $\chi(\operatorname{colim}^{\Phi} X)$ in terms of X?

A more refined question

Suppose:

- $\mathscr V$ is closed symmetric monoidal and cocomplete.
- A is a small 𝒱-category
- $\Phi: \mathbf{A}^{op} \to \mathscr{V}$ is a \mathscr{V} -functor (a "weight")
- $X : \mathbf{A} \to \mathscr{V}$ is a \mathscr{V} -functor with each X(a) dualizable.

Questions

- **1** When does it follow that $\operatorname{colim}^{\Phi} X$ is dualizable?
- **2** Can we calculate $\chi(\operatorname{colim}^{\Phi} X)$ in terms of X?

Remark: we allow \mathscr{V} to have homotopy theory too: an " $(\infty, 1)$ -category" or "derivator".

1 Background

- 2 Symmetric monoidal traces
- **3** Bicategorical traces

4 Traces for enriched modules

- A monoidal $\mathscr V$ becomes a bicategory $B\mathscr V$ with one object.
- An object $X \in \mathscr{V}$ is dualizable $\iff X$ has an adjoint in $B\mathscr{V}$.

Question

In an arbitrary bicategory, given a 1-cell $X : A \rightarrow B$ with an adjoint and a 2-cell $f : X \rightarrow X$, can we define its trace?

- A monoidal $\mathscr V$ becomes a bicategory $B\mathscr V$ with one object.
- An object $X \in \mathscr{V}$ is dualizable $\iff X$ has an adjoint in $B\mathscr{V}$.

Question

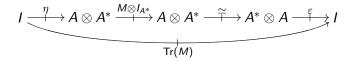
In an arbitrary bicategory, given a 1-cell $X : A \rightarrow B$ with an adjoint and a 2-cell $f : X \rightarrow X$, can we define its trace?

$$I_{A} \xrightarrow{\eta} X \odot X^{*} \xrightarrow{f \odot 1} X \odot X^{*} \xrightarrow{???} X^{*} \odot X \xrightarrow{\varepsilon} I_{B}$$

 $X \odot X^*$ and $X^* \odot X$ don't even live in the same category!

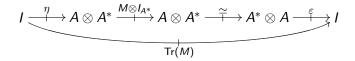
Trace in bicategories

Suppose the bicategory is symmetric monoidal. If the object A has a dual, then a 1-cell $M: A \rightarrow A$ has a trace:



Trace in bicategories

Suppose the bicategory is symmetric monoidal. If the object A has a dual, then a 1-cell $M: A \rightarrow A$ has a trace:



Solution (Ponto)

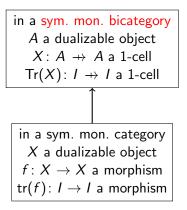
If the objects A and B have duals and $X : A \rightarrow B$ has an adjoint, then $f : X \rightarrow X$ has a trace:

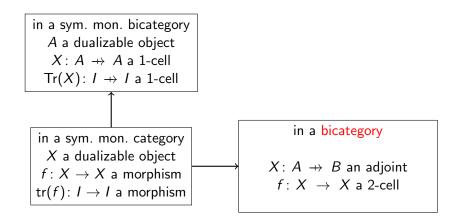
$$\operatorname{Tr}(I_A) \xrightarrow{\eta} \operatorname{Tr}(X \odot X^*) \xrightarrow{f \odot 1} \operatorname{Tr}(X \odot X^*) \xrightarrow{\cong} \operatorname{Tr}(X^* \odot X) \xrightarrow{\varepsilon} \operatorname{Tr}(I_B)$$

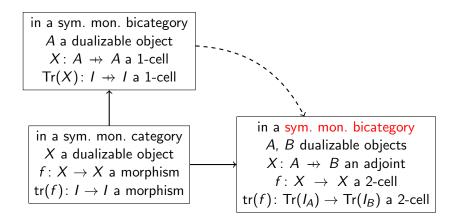
tr(f)

in a sym. mon. category X a dualizable object $f: X \to X$ a morphism $tr(f): I \to I$ a morphism

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @









(The Baez-Dolan microcosm principle.)

If X and Y have adjoints, so does $X \odot Y$ (of course).

Theorem

For 2-cells $f: X \to X$ and $g: Y \to Y$, we have

$$\mathsf{Tr}(I_A) \xrightarrow[\operatorname{tr}(f)]{\operatorname{tr}(f)} \mathsf{Tr}(I_B) \xrightarrow[\operatorname{tr}(g)]{\operatorname{tr}(g)} \mathsf{Tr}(I_C)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1 Background

- 2 Symmetric monoidal traces
- **3** Bicategorical traces

The bicategory of enriched modules

Let ${\mathscr V}$ be symmetric monoidal closed and cocomplete.

Definition

The symmetric monoidal bicategory $\mathscr{V}\mathbf{Mod}$ has

- As objects, small 𝒴-categories.
- As 1-cells A → B, V-functors B^{op} ⊗ A → V
 (a.k.a. profunctors, distributors, modules, relators, ...)
- The composite of $X : \mathbf{A} \to \mathbf{B}$ and $Y : \mathbf{B} \to \mathbf{C}$ is

$$(X \odot Y)(c, a) = \int^{b \in \mathbf{B}} X(b, a) \otimes Y(c, b)$$

- Every object **A** has a dual **A**^{op}.
- The trace of $M: \mathbf{A} \rightarrow \mathbf{A}$ is

$$\operatorname{Tr}(M) = \int^{a \in \mathbf{A}} M(a, a).$$

Let I be the unit \mathscr{V} -category. Then

- A module $\mathbf{A} \rightarrow \mathbf{I}$ is just a \mathscr{V} -functor $\mathbf{A} \rightarrow \mathscr{V}$ (a diagram).
- A module I → A is just a *V*-functor A^{op} → *V* (a weight).
- For $\Phi: \mathbf{I} \to \mathbf{A}$ and $X: \mathbf{A} \to \mathbf{I}$ we have

 $\operatorname{colim}^{\Phi} X \cong \Phi \odot X.$

Theorem

A diagram X has a right adjoint \iff each X(a) is dualizable.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem

A diagram X has a right adjoint \iff each X(a) is dualizable.

Theorem (Street)

A weight has a right adjoint \iff it is absolute, i.e. Φ -weighted colimits are preserved by all \mathscr{V} -functors.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Absolute colimits are dualizable

Recall:

Question 1

If each X(a) is dualizable, when is colim^{Φ} X dualizable?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Answer

When Φ is absolute.

Recall:

Question 1

If each X(a) is dualizable, when is colim^{Φ} X dualizable?

Answer

When Φ is absolute.

Examples

- Finite coproducts are absolute for additive \mathscr{V} .
- Pushouts are absolute for triangulated $\mathscr V$ (homotopically).

• Quotients by finite G are absolute for |G|-divisible \mathscr{V} .

Question 2

If Φ is absolute and each X(a) is dualizable, how can we calculate $\chi(\operatorname{colim}^{\Phi} X)$?

Abstract Answer

Since $\Phi: \mathbf{I} \rightarrow \mathbf{A}$ and $X: \mathbf{A} \rightarrow \mathbf{I}$ have adjoints, we have

$$I = \operatorname{Tr}(I_{\mathbf{I}}) \xrightarrow[\operatorname{tr}(1_{\Phi})]{\operatorname{Tr}}(I_{\mathbf{A}}) \xrightarrow[\operatorname{tr}(1_{X})]{\operatorname{Tr}}(I_{\mathbf{I}}) = I$$

But what are $Tr(I_A)$, $tr(1_{\Phi})$, and $tr(1_X)$?

Traces of categories

$$\mathsf{Tr}(I_{\mathsf{A}}) = \int^{a \in \mathsf{A}} \mathsf{A}(a, a)$$
$$= \sum_{a \in \mathsf{A}} \mathsf{A}(a, a) / (\alpha \beta \sim \beta \alpha)$$

The coproduct (or "direct sum") of all endomorphisms in \mathbf{A} , modulo "conjugacy".

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Traces of categories

$$\operatorname{Tr}(I_{\mathbf{A}}) = \int^{a \in \mathbf{A}} \mathbf{A}(a, a)$$
$$= \sum_{a \in \mathbf{A}} \mathbf{A}(a, a) / (\alpha \beta \sim \beta \alpha)$$

The coproduct (or "direct sum") of all endomorphisms in **A**, modulo "conjugacy".

In particular, it contains

- a class for each identity morphism $[1_a]$.
- $[1_a] = [1_b]$ if and only if $a \cong b$.
- but also classes for other endomorphisms.

For Φ an absolute weight, the trace of $\mathbf{1}_\Phi$

```
tr(1_{\Phi}): I \rightarrow Tr(I_{A})
```

is a linear combination of conjugacy classes of endomorphisms:

 $\sum_{\alpha} \phi^{\alpha}[\alpha].$

Theorem

If $\Phi = \Delta_{\mathbf{A}} 1$ is absolute, **A** is skeletal, and has no nonidentity endomorphisms, then $k^a := \phi^{1_a}$ defines a weighting on **A**.

Theorem

For X a dualizable diagram, the trace of 1_X

 $\operatorname{tr}(1_X) \colon \operatorname{Tr}(I_{\mathbf{A}}) \to I$

sends each endomorphism $\alpha \colon a \to a$ in **A** to the trace in $\mathscr V$ of

$$X(a) \xrightarrow{X(\alpha)} X(a).$$

In particular, it sends 1_a to $\chi(X(a))$.

Recall:

$$I = \operatorname{Tr}(I_{\mathbf{I}}) \xrightarrow{\chi(\operatorname{colim}^{\mathbf{A}} X) = \operatorname{tr}(1_{\Phi} \odot 1_X)} \operatorname{Tr}(I_{\mathbf{A}}) \xrightarrow{\chi(\mathbf{I})} \operatorname{Tr}(I_{\mathbf{I}}) = I$$

Concrete answer

If Φ is absolute and each X(a) is dualizable, then

$$\chi(\operatorname{colim}^{\Phi} X) = \sum_{[\alpha] \in \operatorname{Tr}(I_{\mathsf{A}})} \phi^{\alpha} \cdot \operatorname{tr}(X(\alpha))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Examples

1 Coproducts: **A** discrete with objects *a* and *b*.

- If $\mathscr V$ is additive, $\Phi = \Delta_{\mathbf{A}} 1$ is absolute.
- $Tr(I_A)$ generated by 1_a and 1_b .
- $\phi^{1_a} = \phi^{1_b} = 1.$

2 Pushouts: **A** is $(b \leftarrow c \rightarrow a)$.

- If \mathscr{V} is stable/triangluated, $\Phi = \Delta_{\mathbf{A}} 1$ is absolute.
- $Tr(I_A)$ generated by 1_a , 1_b , and 1_c .

•
$$\phi^{1_{s}} = \phi^{1_{b}} = 1$$
 and $\phi^{1_{c}} = -1$.

3 Quotients: **A** is a finite group G.

- If \mathscr{V} is |G|-divisible, $\Phi = \Delta_{\mathbf{A}} 1$ is absolute.
- $Tr(I_A)$ generated by conjugacy classes in G.

•
$$\phi^{\mathsf{C}} = \frac{|\mathsf{C}|}{|\mathsf{G}|}$$

A the free-living idempotent e on an object x.

- $\Phi = \Delta_{\mathbf{A}} 1$ is absolute for any \mathscr{V} .
- $Tr(I_A)$ generated by 1_x and e.

•
$$\phi^{1_x} = 0$$
 and $\phi^e = 1$.

The colimit of an idempotent $e: X \rightarrow X$ is a splitting of it, and

$$\chi(X/e) = \operatorname{tr}(e).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Euler characteristics of categories

Let **A** be a finite category with no nonidentity endomorphisms.

- **1** $\Phi = \Delta_A 1$ can be constructed from pushouts, hence is absolute for triangulated \mathscr{V} .
- **2** The trace of $1_{\Delta_A 1}$ is a weighting on **A**.
- 3 The homotopy colimit of the constant diagram X(a) = 1 is the classifying space |NA|.

Thus we can deduce:

Theorem (Leinster)

For **A** as above, we have

$$\chi(|N\mathbf{A}|) = \sum_{\mathbf{a}\in A} k^{\mathbf{a}} = the "Euler characteristic of \mathbf{A}".$$