Euler characteristics of colimits

Mike Shulman ${ }^{1}$ Kate Ponto ${ }^{2}$
${ }^{1}$ University of California, San Diego
San Diego, California
${ }^{2}$ University of Kentucky
Lexington, Kentucky
PSSL 93
Cambridge, UK
April 14, 2012

(1) Background
(2) Symmetric monoidal traces
(3) Bicategorical traces
4) Traces for enriched modules

Let \mathbf{A} be a finite category and $X: \mathbf{A} \rightarrow$ FinSet a functor.

Question

When can the cardinality of colim X be calculated from cardinality information about X ?

Example \#1: Coproducts

For finite sets X and Y, we have

$$
|X \sqcup Y|=|X|+|Y|
$$

For a pushout diagram of finite sets

if i and j are injections, then

$$
\left|Y \cup_{X} Z\right|=|Y|+|Z|-|X|
$$

For an action of a finite group G on a finite set X, if the action is free, then

$$
|X / G|=\frac{|X|}{|G|}
$$

Definition

A weighting on a finite category \mathbf{A} is a function

$$
k^{(-)}: \operatorname{ob}(\mathbf{A}) \rightarrow \mathbb{Q}
$$

such that ...

Theorem (Leinster)

If \mathbf{A} admits a weighting and $X: \mathbf{A} \rightarrow$ FinSet is a coproduct of representables, then

$$
|\operatorname{colim} X|=\sum_{a \in \mathbf{A}} k^{a}|X(a)| .
$$

Definition

A weighting on a finite category \mathbf{A} is a function

$$
k^{(-)}: \operatorname{ob}(\mathbf{A}) \rightarrow \mathbb{Q}
$$

such that ...

Theorem (Leinster)

If \mathbf{A} admits a weighting and $X: \mathbf{A} \rightarrow$ FinSet is a coproduct of representables, then

$$
|\operatorname{colim} X|=\sum_{a \in \mathbf{A}} k^{a}|X(a)| .
$$

What about more general diagrams?

Regard a finite set as a 0-dimensional manifold.
Then its cardinality is equal to its Euler characteristic.

Theorem

For any homotopy pushout square of spaces with Euler characteristic:

we have

$$
\chi\left(Y \cup_{X} Z\right)=\chi(Y)+\chi(Z)-\chi(X)
$$

Theorem (Cauchy, Frobenius)

For any action of a finite group G on a finite set X, we have

$$
|X / G|=\frac{1}{|G|} \sum_{g \in G}\left|X^{g}\right|
$$

where $X^{g}=\{x \in X \mid g \cdot x=x\}$.
If the action is free, then $X^{e}=X$ and $X^{g}=\emptyset$ for $g \neq e$.

Outline

(1) Background

(2) Symmetric monoidal traces
(3) Bicategorical traces
4) Traces for enriched modules

Definition

An object X of a closed symmetric monoidal category \mathscr{V} is dualizable if we have X^{*} with maps

$$
I \xrightarrow{\eta} X \otimes X^{*} \quad X^{*} \otimes X \xrightarrow{\varepsilon} I
$$

satisfying the triangle identities.

Definition

An object X of a closed symmetric monoidal category \mathscr{V} is dualizable if we have X^{*} with maps

$$
I \xrightarrow{\eta} X \otimes X^{*} \quad X^{*} \otimes X \xrightarrow{\varepsilon} I
$$

satisfying the triangle identities.

Definition

If X is dualizable and $f: X \rightarrow X$, the trace of f is

$$
I \xrightarrow{\eta} X \otimes X^{*} \xrightarrow{f \otimes 1} X \otimes X^{*} \xrightarrow{\cong} X^{*} \otimes X \xrightarrow{\varepsilon} I
$$

The Euler characteristic of X is $\chi(X)=\operatorname{tr}\left(1_{X}\right)$.

Euler characteristics of finite sets

In (FinSet, $\times, 1$) not many objects are dualizable, but we can apply a monoidal functor

$$
\Sigma:(\text { FinSet }, \times, 1) \rightarrow(\mathscr{V}, \otimes, I)
$$

which preserves some colimits, and calculate traces in \mathscr{V}.

Euler characteristics of finite sets

In (FinSet, $\times, 1$) not many objects are dualizable, but we can apply a monoidal functor

$$
\Sigma:(\text { FinSet }, \times, 1) \rightarrow(\mathscr{V}, \otimes, I)
$$

which preserves some colimits, and calculate traces in \mathscr{V}.

Examples

- $\mathscr{V}=$ Vect, $\Sigma X=$ the free vector space on X.

$$
\chi(\Sigma X)=\operatorname{dim}(\Sigma X)=|X| .
$$

Euler characteristics of finite sets

In (FinSet, $\times, 1$) not many objects are dualizable, but we can apply a monoidal functor

$$
\Sigma:(\text { FinSet }, \times, 1) \rightarrow(\mathscr{V}, \otimes, I)
$$

which preserves some colimits, and calculate traces in \mathscr{V}.

Examples

- $\mathscr{V}=$ Vect, $\Sigma X=$ the free vector space on X.

$$
\chi(\Sigma X)=\operatorname{dim}(\Sigma X)=|X| .
$$

- $\mathscr{V}=$ the stable homotopy category, $\Sigma X=$ the suspension spectrum of X_{+}.

$$
\chi(\Sigma X)=|X| .
$$

(1) If \mathscr{V} is additive, then

$$
\chi(X \oplus Y)=\chi(X)+\chi(Y)
$$

(2) (J.P. May) If \mathscr{V} is triangulated, then

$$
\chi\left(Y \cup_{X} Z\right)=\chi(Y)+\chi(Z)-\chi(X)
$$

(3) (Induced character) If \mathscr{V} is additive and $|G|$-divisible, then

$$
\chi(X / G)=\frac{1}{|G|} \sum_{g \in G} \operatorname{tr} x(g)
$$

(And similarly for traces of other endomorphisms.)

Suppose:

- \mathscr{V} is closed symmetric monoidal and cocomplete.
- \mathbf{A} is a small \mathscr{V}-category
- $\Phi: \mathbf{A}^{\circ p} \rightarrow \mathscr{V}$ is a \mathscr{V}-functor (a "weight")
- $X: \mathbf{A} \rightarrow \mathscr{V}$ is a \mathscr{V}-functor with each $X(a)$ dualizable.

Questions

(1) When does it follow that colim ${ }^{\Phi} X$ is dualizable?
(2) Can we calculate $\chi\left(\operatorname{colim}^{\Phi} X\right)$ in terms of X ?

Suppose:

- \mathscr{V} is closed symmetric monoidal and cocomplete.
- \mathbf{A} is a small \mathscr{V}-category
- $\Phi: \mathbf{A}^{\circ p} \rightarrow \mathscr{V}$ is a \mathscr{V}-functor (a "weight")
- $X: \mathbf{A} \rightarrow \mathscr{V}$ is a \mathscr{V}-functor with each $X(a)$ dualizable.

Questions

(1) When does it follow that colim ${ }^{\Phi} X$ is dualizable?
(2) Can we calculate $\chi\left(\operatorname{colim}^{\Phi} X\right)$ in terms of X ?

Remark: we allow \mathscr{V} to have homotopy theory too: an "($\infty, 1$)-category" or "derivator".
(1) Background
(2) Symmetric monoidal traces
(3) Bicategorical traces
(4) Traces for enriched modules

- A monoidal \mathscr{V} becomes a bicategory $B \mathscr{V}$ with one object.
- An object $X \in \mathscr{V}$ is dualizable $\Longleftrightarrow X$ has an adjoint in $B \mathscr{V}$.

Question

In an arbitrary bicategory, given a 1-cell $X: A \rightarrow B$ with an adjoint and a 2-cell $f: X \rightarrow X$, can we define its trace?

- A monoidal \mathscr{V} becomes a bicategory $B \mathscr{V}$ with one object.
- An object $X \in \mathscr{V}$ is dualizable $\Longleftrightarrow X$ has an adjoint in $B \mathscr{V}$.

Question

In an arbitrary bicategory, given a 1-cell $X: A \rightarrow B$ with an adjoint and a 2-cell $f: X \rightarrow X$, can we define its trace?

$$
I_{A} \xrightarrow{\eta} X \odot X^{*} \xrightarrow{f \odot 1} X \odot X^{*} \xrightarrow{? ? ?} X^{*} \odot X \xrightarrow{\varepsilon} I_{B}
$$

$X \odot X^{*}$ and $X^{*} \odot X$ don't even live in the same category!

Suppose the bicategory is symmetric monoidal. If the object A has a dual, then a 1-cell $M: A \rightarrow A$ has a trace:

Suppose the bicategory is symmetric monoidal. If the object A has a dual, then a 1-cell $M: A \rightarrow A$ has a trace:

Solution (Ponto)

If the objects A and B have duals and $X: A \rightarrow B$ has an adjoint, then $f: X \rightarrow X$ has a trace:

$$
\operatorname{Tr}\left(I_{A}\right) \xrightarrow{\stackrel{\eta}{\longrightarrow}} \operatorname{Tr}\left(X \odot X^{*}\right) \stackrel{f \odot 1}{\xrightarrow{f}} \operatorname{Tr}\left(X \odot X^{*}\right) \stackrel{\cong}{\mathscr{}} \operatorname{Tr}\left(X^{*} \odot X\right) \stackrel{\varepsilon}{\operatorname{tr}(f)} \operatorname{Tr}\left(I_{B}\right)
$$

(The Baez-Dolan microcosm principle.)

If X and Y have adjoints, so does $X \odot Y$ (of course).
Theorem
For 2-cells $f: X \rightarrow X$ and $g: Y \rightarrow Y$, we have

Outline

(1) Background

(2) Symmetric monoidal traces
(3) Bicategorical traces
(4) Traces for enriched modules

Let \mathscr{V} be symmetric monoidal closed and cocomplete.

Definition

The symmetric monoidal bicategory \mathscr{V} Mod has

- As objects, small \mathscr{V}-categories.
- As 1-cells $\mathbf{A} \rightarrow \mathbf{B}, \mathscr{V}$-functors $\mathbf{B}^{o p} \otimes \mathbf{A} \rightarrow \mathscr{V}$ (a.k.a. profunctors, distributors, modules, relators, ...)
- The composite of $X: \mathbf{A} \rightarrow \mathbf{B}$ and $Y: \mathbf{B} \rightarrow \mathbf{C}$ is

$$
(X \odot Y)(c, a)=\int^{b \in \mathbf{B}} X(b, a) \otimes Y(c, b)
$$

- Every object \mathbf{A} has a dual $\mathbf{A}^{o p}$.
- The trace of $M: \mathbf{A} \rightarrow \mathbf{A}$ is

$$
\operatorname{Tr}(M)=\int^{a \in \mathbf{A}} M(a, a)
$$

Diagrams and weights

Let I be the unit \mathscr{V}-category. Then

- A module $\mathbf{A} \rightarrow \mathbf{I}$ is just a \mathscr{V}-functor $\mathbf{A} \rightarrow \mathscr{V}$ (a diagram).
- A module $\mathbf{I} \rightarrow \mathbf{A}$ is just a \mathscr{V}-functor $\mathbf{A}^{O P} \rightarrow \mathscr{V}$ (a weight).
- For $\Phi: \mathbf{I} \rightarrow \mathbf{A}$ and $X: \mathbf{A} \rightarrow \mathbf{I}$ we have

$$
\operatorname{colim}^{\Phi} X \cong \Phi \odot X
$$

Dualizable modules

Theorem
A diagram X has a right adjoint \Longleftrightarrow each $X(a)$ is dualizable.

Theorem
A diagram X has a right adjoint \Longleftrightarrow each $X(a)$ is dualizable.

Theorem (Street)

A weight has a right adjoint \Longleftrightarrow it is absolute, i.e. Φ-weighted colimits are preserved by all \mathscr{V}-functors.

Recall:
Question 1
If each $X(a)$ is dualizable, when is colim ${ }^{\phi} X$ dualizable?

Answer

When Φ is absolute.

Recall:

Question 1

If each $X(a)$ is dualizable, when is colim ${ }^{\phi} X$ dualizable?

Answer

When Φ is absolute.

Examples

- Finite coproducts are absolute for additive \mathscr{V}.
- Pushouts are absolute for triangulated \mathscr{V} (homotopically).
- Quotients by finite G are absolute for $|G|$-divisible \mathscr{V}.

Traces of absolute colimits

Question 2

If Φ is absolute and each $X(a)$ is dualizable, how can we calculate $\chi\left(\operatorname{colim}^{\Phi} X\right)$?

Abstract Answer

Since $\Phi: \mathbf{I} \rightarrow \mathbf{A}$ and $X: \mathbf{A} \rightarrow \mathbf{I}$ have adjoints, we have

$$
I=\operatorname{Tr}\left(I_{\mathbf{I}}\right) \underset{\operatorname{tr}\left(1_{\Phi}\right)}{\chi\left(\text { colim }^{\Phi} X\right)=\operatorname{tr}\left(1_{\Phi} \odot 1_{X}\right)} \operatorname{Tr}\left(I_{\mathbf{A}}\right) \underset{\operatorname{tr}\left(1_{X}\right)}{ } \operatorname{Tr}\left(I_{\mathbf{I}}\right)=I
$$

But what are $\operatorname{Tr}\left(I_{\mathbf{A}}\right), \operatorname{tr}\left(1_{\Phi}\right)$, and $\operatorname{tr}\left(1_{X}\right)$?

$$
\begin{aligned}
\operatorname{Tr}\left(I_{\mathbf{A}}\right) & =\int^{a \in \mathbf{A}} \mathbf{A}(a, a) \\
& =\sum_{a \in \mathbf{A}} \mathbf{A}(a, a) /(\alpha \beta \sim \beta \alpha)
\end{aligned}
$$

The coproduct (or "direct sum") of all endomorphisms in A, modulo "conjugacy".

$$
\begin{aligned}
\operatorname{Tr}\left(I_{\mathbf{A}}\right) & =\int^{a \in \mathbf{A}} \mathbf{A}(a, a) \\
& =\sum_{a \in \mathbf{A}} \mathbf{A}(a, a) /(\alpha \beta \sim \beta \alpha)
\end{aligned}
$$

The coproduct (or "direct sum") of all endomorphisms in A, modulo "conjugacy".

In particular, it contains

- a class for each identity morphism [1a].
- $\left[1_{a}\right]=\left[1_{b}\right]$ if and only if $a \cong b$.
- but also classes for other endomorphisms.

For Φ an absolute weight, the trace of 1_{Φ}

$$
\operatorname{tr}\left(1_{\Phi}\right): I \rightarrow \operatorname{Tr}\left(I_{\mathbf{A}}\right)
$$

is a linear combination of conjugacy classes of endomorphisms:

$$
\sum_{\alpha} \phi^{\alpha}[\alpha] .
$$

Theorem

If $\Phi=\Delta_{\mathbf{A}} 1$ is absolute, \mathbf{A} is skeletal, and has no nonidentity endomorphisms, then $k^{a}:=\phi^{1_{a}}$ defines a weighting on \mathbf{A}.

Theorem

For X a dualizable diagram, the trace of 1_{X}

$$
\operatorname{tr}\left(1_{X}\right): \operatorname{Tr}\left(I_{\mathbf{A}}\right) \rightarrow I
$$

sends each endomorphism $\alpha: a \rightarrow a$ in \mathbf{A} to the trace in \mathscr{V} of

$$
X(a) \xrightarrow{X(\alpha)} X(a) .
$$

In particular, it sends 1_{a} to $\chi(X(a))$.

Recall:

$$
I=\operatorname{Tr}\left(I_{\mathbf{I}}\right) \xrightarrow[\operatorname{tr}\left(1_{\Phi}\right)]{\chi\left(\operatorname{colim}^{\mathbf{A}} x\right)=\operatorname{tr}\left(1_{\Phi} \odot 1_{x}\right)} \operatorname{Tr}\left(I_{\mathbf{A}}\right) \xrightarrow[\operatorname{tr}\left(1_{x}\right)]{ } \operatorname{Tr}\left(I_{\mathbf{I}}\right)=I
$$

Concrete answer

If Φ is absolute and each $X(a)$ is dualizable, then

$$
\chi\left(\operatorname{colim}^{\Phi} X\right)=\sum_{[\alpha] \in \operatorname{Tr}\left(I_{\mathrm{A}}\right)} \phi^{\alpha} \cdot \operatorname{tr}(X(\alpha))
$$

(1) Coproducts: A discrete with objects a and b.

- If \mathscr{V} is additive, $\Phi=\Delta_{\mathbf{A}} 1$ is absolute.
- $\operatorname{Tr}\left(I_{A}\right)$ generated by 1_{a} and 1_{b}.
- $\phi^{1_{a}}=\phi^{1_{b}}=1$.
(2) Pushouts: \mathbf{A} is $(b \leftarrow c \rightarrow a)$.
- If \mathscr{V} is stable/triangluated, $\Phi=\Delta_{\mathbf{A}} 1$ is absolute.
- $\operatorname{Tr}\left(I_{\mathrm{A}}\right)$ generated by $1_{a}, 1_{b}$, and 1_{c}.
- $\phi^{1_{a}}=\phi^{1_{b}}=1$ and $\phi^{1_{c}}=-1$.
(3) Quotients: \mathbf{A} is a finite group G.
- If \mathscr{V} is $|G|$-divisible, $\Phi=\Delta_{\mathbf{A}} 1$ is absolute.
- $\operatorname{Tr}\left(I_{A}\right)$ generated by conjugacy classes in G.
- $\phi^{C}=\frac{|C|}{|G|}$

A the free-living idempotent e on an object x.

- $\Phi=\Delta_{\mathbf{A}} 1$ is absolute for any \mathscr{V}.
- $\operatorname{Tr}\left(I_{A}\right)$ generated by 1_{x} and e.
- $\phi^{1_{x}}=0$ and $\phi^{e}=1$.

The colimit of an idempotent $e: X \rightarrow X$ is a splitting of it, and

$$
\chi(X / e)=\operatorname{tr}(e) .
$$

Let \mathbf{A} be a finite category with no nonidentity endomorphisms.
(1) $\Phi=\Delta_{\mathbf{A}} 1$ can be constructed from pushouts, hence is absolute for triangulated \mathscr{V}.
(2) The trace of $1_{\Delta_{A} 1}$ is a weighting on \mathbf{A}.
(3) The homotopy colimit of the constant diagram $X(a)=1$ is the classifying space $|N A|$.

Thus we can deduce:

Theorem (Leinster)

For \mathbf{A} as above, we have

$$
\chi(|N \mathbf{A}|)=\sum_{a \in A} k^{a}=\text { the "Euler characteristic of } \mathbf{A} \text { ". }
$$

