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What is “applied category theory”?

Mathematics is the study of patterns, usually arising from
observations about the real world.
Applied mathematics is the study of those patterns that are
typically useful in domains outside of mathematics.
Category theory is one way to study patterns arising from
observations about mathematics itself.
Applied category theory is the study of those categorical patterns
that are typically useful in fields of mathematics outside of
category theory.

This talk is about one particular such categorical pattern: trace.
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The trace of a linear map—classical version

Let V be a finite-dimensional vector space over a field k , and
f : V → V a linear map.

Definition
The trace of f is the sum

tr(f ) = a11 + a22 + · · ·+ ann

where 
a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann


is the matrix of f with respect to some basis of V .
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The trace of a linear map—categorical version

Let V ∗ be the dual vector space of V , let ε : V ∗ ⊗ V → k be the
evaluation map, and let η : k → V ⊗ V ∗ be defined by

η(1) =
∑

i

vi ⊗ v∗i

for some basis {vi} of V , with dual basis {v∗i } for V ∗.

Definition
The trace of f is the composite

k
η // V ⊗ V ∗

f⊗id // V ⊗ V ∗
∼= // V ∗ ⊗ V ε // k .
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k
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∼= // V ∗ ⊗ V ε // k .

k
η // V ⊗ V ∗

f⊗id // V ⊗ V ∗
∼= // V ∗ ⊗ V ε // k .

1 � η // ∑
i vi ⊗ v∗i

� f⊗id //
∑

ij aijvj ⊗ v∗i
� ∼= //

∑
ij v∗i ⊗ aijvj

� ε //
∑

ij aijv∗i (vj)

=
∑

i aii .
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The fixed-point index of a map—classical version

Let M be a closed smooth n-manifold and f : M → M a map with a
discrete (hence finite) set of fixed points.

If m is a fixed point, then there is a small (n − 1)-sphere Sm
around m which is approximately mapped to itself by f .
Recall that any self-map g : Sn−1 → Sn−1 of a sphere has a
degree deg(g) ∈ Z.

Definition
The fixed-point index of f : M → M is the sum∑

f (m)=m

deg
(
f |Sm

)
over all fixed points of f .
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The fixed-point index of a map—categorical version

Let M be embedded in Rp. Let Tν be the Thom space of the normal
bundle of the embedding. Let η : Sp → M+ ∧ Tν be the composite of
the Pontryagin-Thom map for ν with the Thom diagonal. Let
ε : Tν ∧M+ → Sp be the Pontryagin-Thom map for the diagonal
followed by projection to Sp.

Definition
The fixed-point index of f is the composite

Sp η // M+ ∧ Tν f⊗id // M+ ∧ Tν
∼= // Tν ∧M+

ε // Sp.

Compare:

k
η // V ⊗ V ∗

f⊗id // V ⊗ V ∗
∼= // V ∗ ⊗ V ε // k .

Why is this the same as the classical version?

More fundamentally, what do all these words mean?
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The Thom space of the normal bundle

To define Tν:
1 Choose a tubular neighborhood of the embedding M ↪→ Rp.
2 Collapse everything outside this neighborhood to a basepoint.

M
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The Thom space of the normal bundle

To define Tν:
1 Choose a tubular neighborhood of the embedding M ↪→ Rp.
2 Collapse everything outside this neighborhood to a basepoint.

(basepoint)

vM
M
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The topological unit

To define η : Sp → M+ ∧ Tν:
1 Identify Sp with the one-point compactification of Rp.
2 Points outside the tubular neighborhood go to the basepoint.
3 Points inside go to themselves, paired with their projection to M.

(basepoint)

vM

M
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x
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The topological unit

To define η : Sp → M+ ∧ Tν:
1 Identify Sp with the one-point compactification of Rp.
2 Points outside the tubular neighborhood go to the basepoint.
3 Points inside go to themselves, paired with their projection to M.

(basepoint)

vM

M

x

v

m η(x) = (m, v)
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The topological counit

To define ε : Tν ∧M+ → Sp:
1 If m and v are far apart, then (m, v) goes to the basepoint.
2 If they are close together, then they are added (TpM ⊕ νpM ∼= Rp).

(basepoint)

vM

M

ε(m, v) = x
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The categorical fixed-point index

Sp η // M+ ∧ Tν f⊗id // M+ ∧ Tν
∼= // Tν ∧M+

ε // Sp.

(basepoint)

vM

M

Two cases:
1 f (m) is far from m.
2 f (m) is close to m.

As m varies near a fixed point, tr(f )(m) covers the sphere with some
degree. Everywhere else, the degree is zero.
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Symmetric monoidal categories

Definition
A symmetric monoidal category is a category C equipped with a
product ⊗ : C × C → C and a unit U ∈ C and isomorphisms

A⊗ (B ⊗ C) ∼= (A⊗ B)⊗ C
A⊗ U ∼= A ∼= U ⊗ A A⊗ B ∼= B ⊗ A

satisfying certain natural axioms.

Examples
1 Veck with product ⊗ and unit k .
2 ModR (R a commutative ring), with product ⊗R and unit R.
3 The stable homotopy category with product ∧ and unit S.
4 Many others. . .
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Duality in symmetric monoidal categories

Definition
In a symmetric monoidal category C , an object M is dualizable if we
have an object M∗ and maps

η : U → M ⊗M∗ ε : M∗ ⊗M → U

satisfying certain natural axioms.

The maps η and ε play the role of the maps we saw before in Veck :

k
η−→ V ⊗ V ∗ V ∗ ⊗ V ε−→ k

1 7→
∑

i

vi ⊗ v∗i v∗i ⊗ vj 7→ v∗i (vj) = δij .

Thus, in Veck the dualizable objects are the finite-dimensional vector
spaces over k .
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Trace in symmetric monoidal categories

Definition
If M is dualizable and f : M → M, then the trace of f is the composite

U
η // M ⊗M∗

f⊗id // M ⊗M∗
∼= // M∗ ⊗M ε // U.

Examples
In Veck , this gives the linear trace.
In ModR, the dualizable objects are the finitely-generated
projective modules, and the trace is analogous to the trace for
vector spaces.
In the stable homotopy category, any smooth manifold is
dualizable, and the trace is the fixed-point index.
Many others. . .
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Graded modules

One more example: let GrVeck be the category of graded vector
spaces over a field k . All the structure is obvious, except that we take

A⊗ B
∼=−→ B ⊗ A

to be defined by
a⊗ b 7→ (−1)|b||a|b ⊗ a.

Then. . .
The dualizable objects are those of finite total dimension, and
The trace of a map is the alternating sum of its degreewise traces:

tr(f ) =
∑

n

(−1)n tr(fn).
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Preservation of traces

Theorem (Preservation of traces)
Let C , D be symmetric monoidal and M dualizable in C . If H : C → D
preserves ⊗ and U up to isomorphism, then H(M) is dualizable in D ,
and for any f : M → M we have tr(H(f )) = H(tr(f )).

Proof

Michael Shulman (University of Chicago) Categorical Traces CCR La Jolla, 8/25/08 19 / 46



Preservation of traces

Theorem (Preservation of traces)
Let C , D be symmetric monoidal and M dualizable in C . If H : C → D
preserves ⊗ and U up to isomorphism, then H(M) is dualizable in D ,
and for any f : M → M we have tr(H(f )) = H(tr(f )).

Proof
Here is tr(f ):

U
η // M ⊗M∗

f⊗id // M ⊗M∗
∼= // M∗ ⊗M ε // U.

(cont. . . )
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Let C , D be symmetric monoidal and M dualizable in C . If H : C → D
preserves ⊗ and U up to isomorphism, then H(M) is dualizable in D ,
and for any f : M → M we have tr(H(f )) = H(tr(f )).

Proof
Apply H to get H(tr(f )):

H(U)
H(η) // H(M ⊗M∗)

H(f⊗id)// H(M ⊗M∗)
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H(ε) // H(U).
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Preservation of traces

Theorem (Preservation of traces)
Let C , D be symmetric monoidal and M dualizable in C . If H : C → D
preserves ⊗ and U up to isomorphism, then H(M) is dualizable in D ,
and for any f : M → M we have tr(H(f )) = H(tr(f )).

Proof
Since H preserves the unit and product:

H(U)

∼=
��

H(η) // H(M ⊗M∗)

∼=
��

H(f⊗id) // H(M ⊗M∗)

∼=
��

∼= // H(M∗ ⊗M)

∼=
��

H(ε) // H(U)

∼=
��

U η
// H(M)⊗ H(M)∗

H(f )⊗id
// H(M)⊗ H(M)∗ ∼=

// H(M)∗ ⊗ H(M) ε
// U.

which is tr(H(f )).
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The Lefschetz fixed-point theorem

Corollary (The Lefschetz fixed-point theorem)
Let M be a closed smooth manifold and f : M → M, and let
H : Mfd→ GrVeck denote rational homology, H(M) = H∗(M,Q). If

tr(H(f )) =
∑

n

(−1)n tr(Hn(f ))

is nonzero, then f has a fixed point.

Proof.
The functor H preserves the product and unit, by the Kunneth theorem:

H(M × N,Q) ∼= H(M,Q)⊗ H(N,Q).

Therefore, tr(H(f )) = H(tr(f )). But tr(f ) is the fixed-point index of f ,
which is zero if f has no fixed points.
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String diagrams

Here is a different way to draw pictures of objects and morphisms in a
monoidal category.

Object X X

Morphism
X f−→ Y

f

X

Y

Composition
X f−→ Y

g−→ Z

f

X

Y

g

Z

Product
X ⊗ Y

X Y

Product
X ⊗ Z

f⊗g−−→ Y ⊗W
f

X

Y

g

Z

W

Morphism
X ⊗ Y f−→ Z f

X Y

Z
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f

X

Y

Composition
X f−→ Y

g−→ Z

f

X

Y

g

Z

Product
X ⊗ Y

X Y

Product
X ⊗ Z

f⊗g−−→ Y ⊗W
f

X

Y

g

Z

W

Morphism
X ⊗ Y f−→ Z f

X Y

Z
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Special string diagrams (plumbing)

Some objects and morphisms are special; we draw them more simply.

Identity
morphism

idX

X
Composite with

identity
X idX−−→ X f−→ Y

f

X

Y

f

X

Y

=

Unit object
U

Product with unit
X ⊗ U ∼= X

X X=

Symmetry
X ⊗ Y ∼= Y ⊗ X

= =

X Y X Y X Y
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More special string diagrams

Dual object X ∗ X*

η : U → X ⊗ X ∗
X X*

ε : X ∗ ⊗ X → U X* X
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Example of string diagrams: the duality axioms

For example, the axioms for a dualizable object X are the following:

X

X

X

X X*

X*

X= and
X

X*

X*

X =

X*

X

X*

Or “bent strings can be straightened.”

What does this mean?

Michael Shulman (University of Chicago) Categorical Traces CCR La Jolla, 8/25/08 25 / 46



Example of string diagrams: the duality axioms

For example, the axioms for a dualizable object X are the following:

X

X

X

X X*

X*

X= and
X

X*

X*

X =

X*

X

X*

Or “bent strings can be straightened.”

What does this mean?

Michael Shulman (University of Chicago) Categorical Traces CCR La Jolla, 8/25/08 25 / 46



Example of string diagrams: the duality axioms (II)

X
∼=��

U ⊗ X

η⊗idX

��
X ⊗ X ∗ ⊗ X

idX⊗ε

��
X ⊗ U

∼=��
X

=

X

X

X

X X*

X*

X= =

X

idX

��
X
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Second example of strings: the trace

If X is dualizable, the trace of f : X → X is given by

X

X*

X*

X

X*f

X =

U
η

��
X ⊗ X ∗

f⊗id
��

X ⊗ X ∗

∼=
��

X ∗ ⊗ X

ε

��
U

or
just f

X
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Why string diagrams are so useful

Theorem (Joyal-Street-Verity)
Any two string diagrams which are topologically equivalent represent
equal morphisms in a symmetric monoidal category.

So we can prove theorems by drawing pictures!

Example

If X and Y are dualizable, X f−→ Y , and Y
g−→ X , then

f

g

g

f

=tr(gf)  = =  tr(fg).
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Noncommutative traces: the problem

Suppose R is a noncommutative ring, M is a finitely generated
projective right R-module, and f : M → M is a map; how can we define
the trace of f? We want to write:

R
η // M ⊗M∗

f⊗id // M ⊗M∗
∼= // M∗ ⊗M ε // R.

where M∗ = HomR(M,R), but. . .
M is a right R-module while M∗ is a left R-module, and thus
M∗ ⊗M = M∗ ⊗Z M is an R-R-bimodule, while
M ⊗R M∗ is just an abelian group (= Z-Z-bimodule). And they
certainly aren’t isomorphic!
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Noncommutative traces: the solution

Definition
For any R-R-bimodule N, the shadow of N is the abelian group

〈〈N〉〉= N
/〈

r · n = n · r | n ∈ N, r ∈ R
〉
.

This is the “circular tensor product of N with itself”, by analogy with

P ⊗R Q = P ⊗Z Q
/
〈pr ⊗ q = p ⊗ rq〉.

Note: if R = Z, then 〈〈N〉〉∼= N.
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Noncommutative traces: the solution (II)

Lemma
If P is an R-S-bimodule and Q is an S-R-bimodule, then

〈〈P ⊗S Q〉〉∼= 〈〈Q ⊗R P〉〉.

In particular, M ⊗R M∗ ∼= 〈〈M ⊗R M∗〉〉∼= 〈〈M∗ ⊗Z M〉〉.

Definition
If M is a finitely generated projective left R-module, the
(Hattori-Stallings) trace of f : M → M is the composite

Z
η // M ⊗R M∗ f⊗id // M ⊗R M∗

∼= // 〈〈M∗ ⊗Z M〉〉
〈〈ε〉〉

// 〈〈R〉〉.

How can we express this idea categorically?
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Bicategories

Definition
A bicategory consists of

A collection of objects: R, S, T , . . . ,
A collection of categories B(R,S),
Product functors � : B(R,S)×B(S,T )→ B(R,T ), and
Units UR ∈ B(R,R),
such that M � (N � P) ∼= (M � N)� P, M � US

∼= M, and
UR �M ∼= M, coherently.

Note: there is no symmetry! M � N and N �M are objects of different
categories, and in general need not both exist.

Example
InMod , the objects are (noncommutative) rings,Mod(R,S) consists
of R-S-bimodules, � is tensor product, and UR = R.
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Pictures in bicategories

In a bicategory B, we sometimes think of an object M ∈ B(R,S) as an
arrow R M−→ S, and call it a 1-cell. Then the product � is a sort of
‘composition’ of 1-cells:

R M−→ S N−→ T = R M�N−−−→ S.

Similarly, we think of a morphism f : M → N in B(R,S) as a
‘higher-dimensional’ arrow or 2-cell:

R
M ''

N
77

�� ��
�� f S.
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Duality in bicategories

Definition
A 1-cell M ∈ B(R,S) in a bicategory is right dualizable if there exists a
1-cell M∗ ∈ B(S,R) and 2-cells η : UR → M �M∗ and
ε : M∗ �M → US, satisfying the same axioms as before.

Example
A Z-R-bimodule is right dualizable inMod if and only if it is a finitely
generated projective right R-module.
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Shadows in bicategories

Definition (Ponto)
A shadow on a bicategory B consists of functors

〈〈−〉〉: B(R,R) −→ T,

for some fixed category T, such that 〈〈M � N〉〉∼= 〈〈N �M〉〉coherently.

Example
We have a shadow on the bicatgoryMod defined by

〈〈N〉〉= N
/
〈r · n = n · r〉

as before.
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Traces in bicategories with shadows

Definition
If B is equipped with a shadow, M ∈ B(R,S) is right dualizable, and
f : M → M is a 2-cell, then the trace of f is the composite

〈〈UR〉〉
〈〈η〉〉

// 〈〈M �M∗〉〉
〈〈 f�id〉〉

// 〈〈M �M∗〉〉
∼= // 〈〈M∗ �M〉〉

〈〈ε〉〉
// 〈〈US〉〉.

Example
For finitely generated projective right R-modules, regarded as 1-cells
from Z to R inMod , this trace recaptures the Hattori-Stallings trace.
(Remember that 〈〈N〉〉∼= N when N is a Z-Z-bimodule.)
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Another example: Euler characteristics and characters

Definition
If M is dualizable, its Euler characteristic is tr(idM).

In the symmetric monoidal case:
In Veck this computes the dimension of a finite dimensional vector
space.
In GrVeck , it computes the alternating sum of the degreewise
dimensions,

∑
i(−1)i dim(Vi).

Thus, by preservation of traces, in the stable homotopy category it
computes the usual Euler characteristic of a manifold.
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Another example: Euler characteristics and characters

Definition
If M is dualizable, its Euler characteristic is tr(idM).

In the bicategorical case:

Let k be a field, G a group, and V a finite-dimensional left kG-module
(i.e. a representation of G over k ). Regarding V as a 1-cell in
Mod(kG, k), it is right dualizable, with dual

V ∗ = Homk (V , k) ∈Mod(k , kG)

(The usual dual vector space, with the induced right kG-module
structure.) Then:

The shadow 〈〈kG〉〉 is a vector space with a basis given by the
conjugacy classes of G, and
The Euler characteristic tr(idV ) : 〈〈kG〉〉→ k is the character of the
representation V .

Michael Shulman (University of Chicago) Categorical Traces CCR La Jolla, 8/25/08 39 / 46



More examples: generalized fixed-point theory

To prove a converse to the Lefschetz fixed-point theorem, one needs
to incorporate information about the fundamental group of M.

Using traces in a ‘stable homotopy bicategory of bimodules’, one can
define an invariant called the Reidemeister trace, identify it with an
algebraic version, and then prove:

Theorem
Let f : M → M be continuous, where M is a closed smooth manifold of
dimension ≥ 3. Then the Reidemeister trace of f is zero if and only if f
is homotopic to a map with no fixed points.

There are also fiberwise and equivariant generalizations. In all cases
the notion of bicategorical trace provides a formal framework and a line
of inquiry which is often fruitful.

Reference: Kate Ponto, “Fixed point theory and trace for bicategories”

Michael Shulman (University of Chicago) Categorical Traces CCR La Jolla, 8/25/08 40 / 46



Outline

1 Traces in symmetric monoidal categories
Two examples
Symmetric monoidal traces: the general case
Application: the Lefschetz fixed-point theorem
String diagrams for monoidal categories

2 Traces in bicategories
Noncommutative traces
Bicategories, shadows, and traces
String diagrams for bicategories with shadows

Michael Shulman (University of Chicago) Categorical Traces CCR La Jolla, 8/25/08 41 / 46



String diagrams for bicategories

The string diagrams for monoidal categories are obtained from the
‘ordinary’ ones by ‘Poincaré duality’:

Object
X

X

Morphism
X f−→ Y

f

X

Y

We do the same for bicategories, one dimension up.
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String diagrams for bicategories, II

Object R
R Product

M � N
M

R S T

N

1-cell

R M−→ S
M

R S

UR
η−→ M �M∗

M

R

S M*

2-cell

R
M

&&

N
88

�� ��
�� f S

R S
f

M

N

M∗ �M ε−→ US

M*

S

MR
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String diagrams for shadows

Shadow
〈〈M〉〉 M

R

Cyclicity
〈〈M � N〉〉∼= 〈〈N �M〉〉

N M

N

R

S

M
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The string diagram for bicategorical trace

M* M

M*

R

M

S

M*

f

M
=

〈〈UR〉〉

〈〈η〉〉
��

〈〈M ⊗M∗〉〉

〈〈 f⊗id〉〉
��

〈〈M ⊗M∗〉〉
∼=

��
〈〈M∗ ⊗M〉〉

〈〈ε〉〉
��
〈〈US〉〉

or
just M

R

S

f
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The string diagram for bicategorical trace

M* M

M*

R

M

S

M*

f

M
=

〈〈UR〉〉

〈〈η〉〉
��

〈〈M ⊗M∗〉〉

〈〈 f⊗id〉〉
��

〈〈M ⊗M∗〉〉
∼=

��
〈〈M∗ ⊗M〉〉

〈〈ε〉〉
��
〈〈US〉〉

or
just M

R

S

f
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Conclusion

Trace in symmetric monoidal categories unifies many different
notions, including the linear trace and the fixed-point index.
Formal comparison results can then produce contentful theorems
(e.g. the Lefschetz fixed-point theorem).
Trace in bicategories generalizes this to include examples such as
noncommutative linear traces and basepoint-free, fiberwise, and
equivariant fixed-point theory.
In both cases, string diagrams can be used to obtain intuition and
simplify proofs.
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