
Cell complexes 1-monads Algebraic fibrations Homotopy monads Cell monads HITs

Abstracting away from cell complexes

Michael Shulman1 Peter LeFanu Lumsdaine2

1University of San Diego

2Stockholm University

March 12, 2016



Cell complexes 1-monads Algebraic fibrations Homotopy monads Cell monads HITs

Replacing big messy cell complexes with smaller
and simpler but more abstract ones

Michael Shulman1 Peter LeFanu Lumsdaine2

1University of San Diego

2Stockholm University

March 12, 2016



Cell complexes 1-monads Algebraic fibrations Homotopy monads Cell monads HITs

Outline

1 Cell complexes

2 Presentations of 1-monads

3 Algebraic model category theory

4 Presentations of homotopical monads

5 More abstract cell complexes

6 Higher Inductive Types



Cell complexes 1-monads Algebraic fibrations Homotopy monads Cell monads HITs

Small simple cell complexes

• Spheres

• Tori

• Projective space

• Manifolds

• . . .
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Big messy cell complexes, I

Postnikov towers

The nth Postnikov section of X is obtained from X by

• gluing on enough (n + 2)-cells to kill πn+1(X ), then

• gluing on enough (n + 3)-cells to kill πn+2 of the result, then

• gluing on enough (n + 4)-cells to kill πn+3 of the result,

• and so on.

Note: Gluing on a k-cell is the same as taking a pushout

Sk−1 //

��

X

Dk
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Big messy cell complexes, II

Localization

The localization of X at a map f : S → T is obtained by:

• Replacing f by a cofibration,

• Taking its pushout product with all the boundary inclusions
Sn ↪→ Dn+1,

• For each resulting map f̂n : An → Bn, taking one pushout

An
//

��

X

Bn

for each map An → X ,

• Repeating the previous step, perhaps transfinitely often,

• . . . until we’re done.
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Big messy cell complexes, III

. . . and it doesn’t get any easier from there.

Can we package up this machinery better so we don’t have to
think about it?
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The 1-categorical case

• G. M. Kelly, “A unified treatment of transfinite constructions
for free algebras, free monoids, colimits, associated sheaves,
and so on”, Bull. Austral. Math. Soc. 22 (1980), 1–83

Theorem (Kelly)

Let A be a cocomplete category with two cocomplete factorization
systems (E ,M) and (E ′,M′), let A be E- and E ′-cowellpowered,
let S be a well-pointed endofunctor, and for some regular cardinal
α let S preserve the E-tightness of (M, α)-cones. Then S-Alg is
constructively reflective in A.
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The 1-categorical case, really now

Theorem (Kelly?)

Let C be a locally presentable category. Then:

• Every accessible endofunctor of C generates an
algebraically-free monad.

• Every small diagram of accessible monads on C has an
algebraic colimit.

• What does this mean?

• What is it good for?



Cell complexes 1-monads Algebraic fibrations Homotopy monads Cell monads HITs

The 1-categorical case, really now

Theorem (Kelly?)

Let C be a locally presentable category. Then:

• Every accessible endofunctor of C generates an
algebraically-free monad.

• Every small diagram of accessible monads on C has an
algebraic colimit.

• What does this mean?

• What is it good for?



Cell complexes 1-monads Algebraic fibrations Homotopy monads Cell monads HITs

Review about monads

• Every monad T has a category of algebras T -Alg.

• The forgetful functor UT : T -Alg→ C has a left adjoint FT .

• T = UTFT

• The assignation T 7→ T -Alg is a fully faithful embedding

Monadsop ↪→ Cat/C .

i.e. we have

Monads(T1,T2) ∼= Cat/C(T2-Alg,T1-Alg)
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• The assignation T 7→ T -Alg is a fully faithful embedding
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i.e. we have
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T1

T1η2−−−→ T1T2

actGT2−−−−→ T2

]
←[


T2-Alg

G //

UT2 ��

T1-Alg

UT1��
C
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Free monads

Definition

Every monad has an underlying endofunctor; this defines a functor

monads on C −→ endofunctors on C.

A free monad on an endofunctor S is the value at S of a (partially
defined) left adjoint to this:

Monads(S ,T ) ∼= Endofrs(S ,T )

S //

��

S

��
T
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Algebraically-free monads

Definition

For an endofunctor S , an S-algebra is an object X equipped with a
map SX → X .

Definition

A monad S is algebraically-free on S if we have an equivalence of
categories over C:

S monad-algebras
'−→ S endofunctor-algebras

Theorem (Kelly?)

Every algebraically-free monad is free, and the converse holds if C
is locally small and complete.
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Examples

S(X ) = A

• S-algebras are objects X with a map A→ X .

• S(X ) = X + A.

S(X ) = X × X

• S-algebras are “magmas”: objects X with a binary operation
X × X → X .

• S(X ) is the free magma on X ; in Set its elements are
bracketed words ((xy)z)(zy).

Note: can be built as an infinite “cell complex”

X −→ X t (X × X ) −→ · · ·
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Examples, II

S(X ) = X × X + 1

• S-algebras are “pointed magmas”.

S(X ) = A× X + 1

• S(∅) is the “list object” on A, generated by nil : 1→ X and
cons : A× X → X .

• If A = 1, then S(∅) = N.
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Algebraically-free monads

Theorem (Kelly?)

Every algebraically-free monad is free, and the converse holds if C
is locally small and complete.

Proof.

If S is algebraically-free on S , then

Endofrs(S ,T ) ∼= Cat/C(T -Algmonad, S-Algendofr)

∼= Cat/C(T -Algmonad, S-Algmonad)

∼= Monads(S ,T )
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Algebraically-free monads

Theorem (Kelly?)

Every algebraically-free monad is free, and the converse holds if C
is locally small and complete.

Proof.

If C is loc sm and complete, X ∈ C has an endomorphism monad
〈X ,X 〉 = Ran(X :1→C)(X : 1→ C) such that

• For a monad T ,(
T -algebra structures on X

)
←→

(
monad maps T → 〈X ,X 〉

)
.

• For an endofunctor S ,(
S-algebra structures on X

)
←→

(
endofr maps S → 〈X ,X 〉

)
.
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Algebraic colimits of monads

Definition

An algebraic colimit of a diagram D : J → Monads is a monad T
with an equivalence of categories over C:

T -Alg
'−→ limj∈J Dj -Alg

This is a limit in Cat/C , so it means that

T -algebra structures on X ←→ compatible families of
Dj -algebra structures on X .

Theorem

Every algebraic colimit is a colimit in the category of monads, and
the converse holds if C is locally small and complete.
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Example 0: coproducts

Example

The algebraically-initial monad has, as category of algebras, the
terminal object of Cat/C , namely C itself. Thus, it is the identity
monad Id.

Example

An algebra structure for the algebraic coproduct T1 t T2 consists
of unrelated T1-algebra and T2-algebra structures.



Cell complexes 1-monads Algebraic fibrations Homotopy monads Cell monads HITs

Example 0: coproducts

Example

The algebraically-initial monad has, as category of algebras, the
terminal object of Cat/C , namely C itself. Thus, it is the identity
monad Id.

Example

An algebra structure for the algebraic coproduct T1 t T2 consists
of unrelated T1-algebra and T2-algebra structures.



Cell complexes 1-monads Algebraic fibrations Homotopy monads Cell monads HITs

Example 1: algebra

Recall a semigroup is a magma whose operation is associative.

1 Let S2(X ) = X × X ; so S2-algebras are magmas and S2X is
the free magma on X .

2 Let S3(X ) = X × X × X , so S3-algebras are sets equipped
with a ternary operation.

3 A magma X has two induced ternary operations x(yz) and
(xy)z . This yields two functors

S2-Alg ⇒ S3-Alg

whose equalizer is the category of semigroups.

4 Thus, the algebraic coequalizer of the corresponding two
monad morphisms S3 ⇒ S2 is the monad for semigroups.
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Presentations of monads

Definition

A presentation of a group (or other algebraic structure) is a
coequalizer of maps between free groups:

F 〈R〉⇒ F 〈X 〉 → G

Definition

A generalized presentation of an object is an iterated colimit of
diagrams of free objects.

Definition

A generalized presentation of a monad is an (algebraic) iterated
colimit of diagrams of (algebraically-)free monads.
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Example 2: localization

Let f : A→ B be a fixed morphism.

1 Let Sf (X ) = C(A,X ) · B and SA(X ) = C(A,X ) · A and
SB(X ) = C(B,X ) · B.

2 An Sf -algebra X is equipped with a map C(A,X ) · B → X , or
equivalently C(A,X )→ C(B,X ).

3 An Sf -algebra has two SA-algebra structures: “evaluation”

and the composite C(A,X ) · A f−→ C(A,X ) · B → X .

4 These coincide iff the Sf -algebra structure C(A,X )→ C(B,X )
is a right inverse to (− ◦ f ) : C(B,X )→ C(A,X ).

5 Similarly, an Sf -algebra has two SB -algebra structures, which
coincide iff the Sf -algebra structure is a left inverse to (−◦ f ).
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Example 2: localization

6 The joint equalizer of the two parallel pairs

SA-Alg

Sf -Alg

44
44

**
**
SB -Alg

consists of X for which (− ◦ f ) : C(B,X )→ C(A,X ) has a
(necc. unique) two-sided inverse — i.e. the f -local objects.

7 Thus, the joint algebraic coequalizer of the pairs

SA
(((( Sf

// Lf

SB

66 66

is the f -localization (the “free f -local object” monad).
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Example 3: combining structures

Suppose instead of one morphism f : A→ B we have a set of
them, {fi : Ai → Bi}i∈I .

1 We could generalize the construction of Lf to L{fi}.

2 Or we could simply take the algebraic coproduct
∐

i∈I Lfi ,
whose algebras are equipped with (unrelated) Lfi -algebra
structures, hence fi -local for all i .
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Bringing in the homotopy theory

Assumption

C is a presheaf category with a right proper simplicial model
structure in which the cofibrations are the monomorphisms.

(For most of what follows, this is much more than necessary.)

Examples:

• Simplicial sets

• The injective model structure on simplicial presheaves

• Any right proper localization of the latter

• Any locally presentable, locally cartesian closed ∞-category
has such a presentation (Cisinski, Gepner–Kock)
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Algebraic fibrant replacement

Let J be the generating acyclic cofibrations. Copying only the first
half of the localization construction, we obtain a monad R whose
algebras are algebraically fibrant: objects X equipped with chosen
lifts against all J -maps.

Theorem (Garner)

Each unit map ηX : X → RX is an acyclic cofibration.

Thus, R is a “fibrant replacement monad”.
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Algebraic factorization

More generally, we have a monad R on C→ whose algebras are
algebraic fibrations: maps g : Y → X equipped with chosen lifts
against all J -maps.

Theorem (Garner)

For any g : Y → X , the unit ηg : g → Rg looks like

Y //

��

Eg

��
X X

and Y → Eg is an acyclic cofibration.

(In fact, we have a whole “algebraic weak factorization system”:
cofibrant replacement is also a comonad.)
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Composing algebraic fibrations

Theorem (Garner)

If g : Y → X and f : Z → Y are algebraic fibrations, then gf is
naturally an algebraic fibration, and the square

Z
f //

gf
��

Y

g
��

X X

is a morphism of R-algebras.

Corollary

If f : Z → Y is an algebraic fibration and Y is algebraically fibrant,
then Z is algebraically fibrant and f is a map of R-algebras.
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Homotopical localization

We can repeat the 1-categorical construction, with mapping spaces
and homotopies instead of hom-sets and equalities.

1 Sf (X ) = Map(A,X )⊗ B, with Map(A,X ) the simplicial
mapping space and ⊗ the simplicial tensor.

2 Instead of the coequalizer of SA ⇒ Sf we take the pushout of

2⊗ S1

��

SA t SA
// Sf

��
∆1 ⊗ SA

// Pf

A Pf -algebra is equipped with a right homotopy inverse to
(− ◦ f ) : Map(B,X )→ Map(A,X ).
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Homotopical localization

3 Instead of a joint coequalizer/pushout using a single copy of
Sf , we take the coproduct of Pf and its dual.

• The algebras are equipped with both a left and a right
homotopy inverse to (− ◦ f ), perhaps different.

• The existence of such is still equivalent to (− ◦ f ) being a
homotopy equivalence.

• The space of (left inverse, right inverse) pairs is contractible (if
nonempty); the space of two-sided homotopy inverses is not.

Let’s call the resulting monad L̃f .
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Ensuring fibrancy

BUT!!!

• L̃f does not produce fibrant objects.

• Map(A,X ) has the wrong homotopy type if X is not fibrant!
So non-fibrant L̃f -algebras need not even have f -local
homotopy type.

• In particular, L̃f X need not have f -local homotopy type.

Simple answer

Take the algebraic coproduct Lf = L̃f t R with the fibrant
replacement monad.

• Lf -algebras are L̃f -algebras with an unrelated R-structure.

• In particular, they are fibrant, hence f -local; including Lf X .
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Homotopy initiality

So Lf X is f -local; but is it the f -localization?

• Lf X is strictly initial in the category of “algebraically f -local”,
algebraically fibrant objects under X (and maps that preserve
the algebraic structure).

• The f -localization is supposed to be homotopy initial in the
category of f -local, fibrant objects under X (and all maps).
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Acyclically cofibrant algebras

Theorem

If p : Y → Lf X is a (non-algebraic) fibration where Y is f -local,
then any section of p over X extends to a section of p:

Y

p

		
X

==

// Lf X

HH

or

X //

��

Y

p

��
Lf X

;;

Lf X
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Acyclically cofibrant algebras

If p : Y → Lf X is a (non-algebraic) fibration where Y is f -local,
then any section of p over X extends to a section of p.

Proof.

1 Since Y is f -local and p is a fibration, we can choose an
L̃f -algebra structure on Y making p an L̃f -algebra map.

2 Choose an arbitrary R-algebra structure on p.

3 By composition, Y becomes an R-algebra, hence an
Lf = (L̃f t R)-algebra, and p an Lf -algebra map.

4 Since Lf X is the free Lf -algebra on X , the given section
X → Y induces an Lf -algebra map Lf X → Y .

5 Since the composite Lf X → Y → Lf X is again an Lf -algebra
map, by uniqueness it is the identity.
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Homotopy initiality

Theorem

Lf X is the f -localization of X .

Proof.

1 We will show Map(Lf X ,Z )→ Map(X ,Z ) is an acyclic
fibration for any f -local fibrant Z , by lifting in an arbitrary

X
r //

��

Z ∆n

��
Lf X s

// Z∂∆n

2 Since Lf X , Z∂∆n
, and Z ∆n

are f -local, so is s∗Z ∆n
.

3 The map s∗Z ∆n → Lf X is a fibration, so it has a section by
the previous theorem.
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Well-behaved monads

What is special about localization, and what isn’t? We need:

1 T -algebra structures can be rectified along fibrations.

2 T -algebra structures lift to path objects, etc.

These work for localization because the pushout

2⊗ S1

��

SA t SA
// Sf

��
∆1 ⊗ SA

// Pf

is homotopically well-behaved.
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Cell monads

Definition

• A generating cofibration of monads is a map

S × A→ S × B

where S is a well-behaved endofunctor and A→ B is a
generating cofibration.

• A cell complex of monads is a composite of pushouts of
generating cofibrations.

• A cell monad T is such that Id→ T is a cell complex.
(Recall Id is the initial object in the category of monads.)
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Homotopy theory of cell monads, I

“T -algebra structures lift to path objects, etc.”

Theorem

If T is a cell monad, then the category T -Algf of fibrant
T -algebras is a fibration category á là Brown.

Sketch of proof.

Fibrations, weak equivalences, and limits are inherited from the
base category. For factorizations, we argue inductively up the cell
complex Id→ T . In the case of a generating cofibration, we factor
downstairs and lift the (S × B)-algebra structure, using the
pushout product.
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Homotopy theory of cell monads, II

Theorem (in progress)

1 If T1 → T2 is a cell complex, then T2-Algf → T1-Algf is
almost a “fibration of fibration categories” á là Szumi lo.

2 The pushouts in a cell complex yield homotopy pullbacks of
fibration categories, hence (Szumi lo) pullbacks of ∞-cats.

3 For a cell monad T ,
• the homotopy ∞-category of T -Algf coincides with the

algebras for the analogous ∞-monad;
• any map of ∞-algebras can be presented by a T -algebra

fibration; and hence
• free (T t R)-algebras present free objects of this ∞-category.

tl;dr: Cell monads are homotopically meaningful.
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Replacing big messy cell complexes with smaller
and simpler but more abstract ones

Before

The f -localization of a space is a cell complex with transfinitely
many cells.

After

The f -localization monad is a cell monad with four cells.
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∞-monads

Question

Why not work directly with presentations of ∞-monads?

In theory, we could. But reasons to use cell monads include:

1 We can leverage Kelly’s existing “package”.

2 Fits in a model-categorical framework, if we prefer that for
other reasons.

3 Free (T t R)-algebras have a stronger universal property than
just ∞-freeness.

. . . and it corresponds exactly to “induction
principles” in type theory.
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Outline
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Higher Inductive Types

Slogan

Higher inductive types are a notation for describing families of cell
monads that exist “uniformly” in all nice model categories.

Example

For f : A→ B, the f -localization Lf X is generated by four
“constructors” (monad cells):

1 ext : ∀(g : A→ Lf X ),B → Lf X

2 rinv : ∀(g : A→ Lf X ), ∀(a : A), extg (f (a)) = g(a)

3 ext′ : ∀(g : A→ Lf X ),B → Lf X

4 linv : ∀(h : B → Lf X ), ∀(b : B), ext′h◦f (b) = h(b)
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Homotopy type theory

Slogan

Type theory is a system of notations for describing constructions
that exist “uniformly” in all categories of a certain sort.

Each “type constructor” represents a category-theoretic operation,
e.g. x : A `

∏
y :B(x) C represents the right adjoint to pullback

along a fibration B → A.

Slogan

Homotopy type theory is a system of notations for describing
constructions that exist in all “categories with homotopy theory”.

Fine print: there are unresolved coherence questions in making this completely precise in generality.
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Some history

• Traditional type theory has “ordinary” inductive types, which
describe free monads and coproducts of monads.

• These include coproducts of spaces, but not other colimits.

• HITs were invented to describe other colimits in type theory.

• Only afterwards did we discover cell monads, when trying to
model them categorically.
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Recursion and induction for N

Recursion principle

Given any X together with x0 : 1→ X and xs : N× X → X , there
is an f : N→ X such that

f (0) = x0

f (n + 1) = xs(n, f (n))

Induction principle

Given any property P(n) such that P(0) and P(n)→ P(n + 1), we
have ∀n,P(n).



Cell complexes 1-monads Algebraic fibrations Homotopy monads Cell monads HITs

Recursion and induction for N

Recursion principle

Given any X together with x0 : 1→ X and xs : N× X → X , there
is an f : N→ X such that

f (0) = x0

f (n + 1) = xs(n, f (n))

Induction principle

Given any property P(n) such that P(0) and P(n)→ P(n + 1), we
have ∀n,P(n).



Cell complexes 1-monads Algebraic fibrations Homotopy monads Cell monads HITs

Type-theoretic induction for N

Generalized induction principle

Given any map p : C → N together with x0 : p−1(0) and functions
xs,n : p−1(n)→ p−1(n + 1) for all n, we have a section f : N→ C
of p such that

f (0) = x0

f (n + 1) = xs,n(f (n))

• C = N× X gives recursion.

• C = { n ∈ N | P(n) } gives induction.
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Categorical induction for N

Generalized induction principle

Given any map p : C → N together with x0 : 1→ C and
xs : C → C such that

1
x0 //

��

C

p
��

1
0
// N

and

C
xs //

��

C

��
N

+1
// N

(1)

we have a section f : N→ C of p such that

f (0) = x0

f (n + 1) = xs(f (n))
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Endofunctor induction

Generalized induction principle

Let S(X ) = 1 + X . Then any S-algebra map C → N has a section.

In type theory, these maps are restricted to be fibrations,
corresponding to “dependent types”.

Ordinary inductive types

For any well-behaved endofunctor S , there is an S-algebra WS

such that any S-algebra fibration C →WS has a section.

(It’s (S t R)(∅).)
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Higher inductive types

Higher inductive types

For any cell monad T , there is a T -algebra WT such that any
T -algebra fibration C →WT has a section.

Gives type-theoretic notations for:

• Small concrete cell complexes (spheres, tori, etc.)

• Homotopy colimits

• Localization

• Postnikov towers

• Spectrification

• And much more!
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