Cell complexes				Cell monads	HITs
	Abstrac	cting away fro	m cell compl	exes	

Michael Shulman¹ Peter LeFanu Lumsdaine²

 $^1 {\rm University}$ of San Diego

²Stockholm University

March 12, 2016

Cell complexes				Cell monads	HITs
Re	placing bi	g messy cell o	complexes wit	h smaller	

and simpler but more abstract ones

Michael Shulman¹ Peter LeFanu Lumsdaine²

¹University of San Diego

²Stockholm University

March 12, 2016

- 2 Presentations of 1-monads
- 3 Algebraic model category theory
- Presentations of homotopical monads
- 5 More abstract cell complexes
- **6** Higher Inductive Types

Small simple cell complexes

- Spheres
- Tori
- Projective space
- Manifolds
- . . .

Big messy cell complexes, I

Postnikov towers

The n^{th} Postnikov section of X is obtained from X by

- gluing on enough (n+2)-cells to kill $\pi_{n+1}(X)$, then
- gluing on enough (n+3)-cells to kill π_{n+2} of the result, then
- gluing on enough (n + 4)-cells to kill π_{n+3} of the result,
- and so on.

Note: Gluing on a k-cell is the same as taking a pushout

$$S^{k-1} \longrightarrow X$$

$$\downarrow$$

$$D^{k}$$

Big messy cell complexes, II

Localization

The localization of X at a map $f : S \to T$ is obtained by:

- Replacing f by a cofibration,
- Taking its pushout product with all the boundary inclusions $S^n \hookrightarrow D^{n+1}$,
- For each resulting map $\hat{f}_n: A_n \to B_n$, taking one pushout

$$\begin{array}{c} A_n \longrightarrow X \\ \downarrow \\ B_n \end{array}$$

for each map $A_n \to X$,

- Repeating the previous step, perhaps transfinitely often,
- ... until we're done.

gebraic fibrations

Homotopy mo

Cell mon

HITs

Big messy cell complexes, III

... and it doesn't get any easier from there.

Big messy cell complexes, III

- ... and it doesn't get any easier from there.
- Can we package up this machinery better so we don't have to think about it?

2 Presentations of 1-monads

- 3 Algebraic model category theory
- Presentations of homotopical monads
- 5 More abstract cell complexes
- **6** Higher Inductive Types

• G. M. Kelly, "A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on", Bull. Austral. Math. Soc. 22 (1980), 1–83 • G. M. Kelly, "A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on", Bull. Austral. Math. Soc. 22 (1980), 1–83

Theorem (Kelly)

Let \mathcal{A} be a cocomplete category with two cocomplete factorization systems $(\mathcal{E}, \mathcal{M})$ and $(\mathcal{E}', \mathcal{M}')$, let \mathcal{A} be \mathcal{E} - and \mathcal{E}' -cowellpowered, let S be a well-pointed endofunctor, and for some regular cardinal α let S preserve the \mathcal{E} -tightness of (\mathcal{M}, α) -cones. Then S-Alg is constructively reflective in \mathcal{A} .

The 1-categorical case, really now

Theorem (Kelly?)

Let \mathcal{C} be a locally presentable category. Then:

- Every accessible endofunctor of C generates an algebraically-free monad.
- Every small diagram of accessible monads on C has an algebraic colimit.

The 1-categorical case, really now

Theorem (Kelly?)

Let ${\mathcal C}$ be a locally presentable category. Then:

- Every accessible endofunctor of C generates an algebraically-free monad.
- Every small diagram of accessible monads on C has an algebraic colimit.
- What does this mean?
- What is it good for?

Cell complexes	1-monads		Cell monads	HITs
Review a	bout mor	nads		

- Every monad T has a category of algebras T-Alg.
- The forgetful functor $U_T : T$ -Alg $\rightarrow C$ has a left adjoint F_T .
- $T = U_T F_T$

- Every monad T has a category of algebras T-Alg.
- The forgetful functor $U_T : T$ -Alg $\rightarrow C$ has a left adjoint F_T .
- $T = U_T F_T$
- The assignation $T \mapsto T$ -Alg is a fully faithful embedding

$$\mathsf{Monads}^\mathsf{op} \hookrightarrow \mathsf{Cat}_{/\mathcal{C}}.$$

i.e. we have

$$\begin{array}{lll} \mathsf{Monads}(T_1, T_2) &\cong & \mathsf{Cat}_{/\mathcal{C}}(T_2 \text{-}\mathsf{Alg}, T_1 \text{-}\mathsf{Alg}) \\ & \left[\phi: T_1 \to T_2\right] &\mapsto & \left[(T_2 X \to X) \mapsto (T_1 X \xrightarrow{\phi} T_2 X \to X)\right] \end{array}$$

- Every monad T has a category of algebras T-Alg.
- The forgetful functor $U_T : T$ -Alg $\rightarrow C$ has a left adjoint F_T .
- $T = U_T F_T$
- The assignation $T \mapsto T$ -Alg is a fully faithful embedding

$$\mathsf{Monads}^\mathsf{op} \hookrightarrow \mathsf{Cat}_{/\mathcal{C}}.$$

i.e. we have

Definition

Every monad has an underlying endofunctor; this defines a functor

monads on
$$\mathcal{C} \longrightarrow \mathsf{endofunctors}$$
 on $\mathcal{C}.$

A free monad on an endofunctor S is the value at S of a (partially defined) left adjoint to this:

 $Monads(\overline{S}, T) \cong Endofrs(S, T)$

Algebraically-free monads

Definition

For an endofunctor S, an S-algebra is an object X equipped with a map $SX \rightarrow X$.

Definition

A monad \overline{S} is algebraically-free on S if we have an equivalence of categories over C:

 \overline{S} monad-algebras $\stackrel{\simeq}{\longrightarrow} S$ endofunctor-algebras

Theorem (Kelly?)

Every algebraically-free monad is free, and the converse holds if C is locally small and complete.

Cell co	omplexes	1-monads	Algebraic fibrations		Cell monads	HITs
Exa	amples					
	S(X) =	A				
		$(gebras are) = X + \lambda$	e objects <i>X</i> with a	a map $A o X$.		

Cell complexes	1-monads	Algebraic fibrations	Cell monads	HITs
Examples				
S(X) =	A			

• S-algebras are objects X with a map $A \rightarrow X$.

•
$$\overline{S}(X) = X + A$$
.

 $S(X) = X \times X$

- S-algebras are "magmas": objects X with a binary operation $X \times X \rightarrow X$.
- *S*(X) is the free magma on X; in Set its elements are bracketed words ((xy)z)(zy).

Cell complexes	1-monads	Algebraic fibrations	Cell monads	HITs
Examples				
S(X) =	A			

• S-algebras are objects X with a map $A \rightarrow X$.

•
$$\overline{S}(X) = X + A$$
.

 $S(X) = X \times X$

- S-algebras are "magmas": objects X with a binary operation $X \times X \rightarrow X$.
- *S*(X) is the free magma on X; in Set its elements are bracketed words ((xy)z)(zy).

Note: can be built as an infinite "cell complex"

$$X \longrightarrow X \sqcup (X \times X) \longrightarrow \cdots$$

$S(X) = X \times X + 1$

• S-algebras are "pointed magmas".

$S(X) = X \times X + 1$

• S-algebras are "pointed magmas".

$S(X) = A \times X + 1$

• $\overline{S}(\emptyset)$ is the "list object" on A, generated by nil : $1 \to X$ and cons : $A \times X \to X$.

• If
$$A = 1$$
, then $\overline{S}(\emptyset) = \mathbb{N}$.

Algebraically-free monads

Theorem (Kelly?)

Every algebraically-free monad is free, and the converse holds if C is locally small and complete.

Proof.

If \overline{S} is algebraically-free on S, then

$$\begin{split} \mathrm{Endofrs}(S,T) &\cong \mathsf{Cat}_{/\mathcal{C}}(T\text{-}\mathsf{Alg}_{\mathsf{monad}},S\text{-}\mathsf{Alg}_{\mathsf{endofr}}) \\ &\cong \mathsf{Cat}_{/\mathcal{C}}(T\text{-}\mathsf{Alg}_{\mathsf{monad}},\overline{S}\text{-}\mathsf{Alg}_{\mathsf{monad}}) \\ &\cong \mathrm{Monads}(\overline{S},T) \end{split}$$

Algebraically-free monads

Theorem (Kelly?)

Every algebraically-free monad is free, and the converse holds if C is locally small and complete.

Proof.

If C is loc sm and complete, $X \in C$ has an endomorphism monad $\langle X, X \rangle = \operatorname{Ran}_{(X:1 \to C)}(X:1 \to C)$ such that

• For a monad *T*,

$$\left(\mathcal{T} ext{-algebra structures on }X
ight) \longleftrightarrow \Big(ext{monad maps }\mathcal{T} o \langle X,X
angle \Big).$$

• For an endofunctor S,

$$\Bigl(S ext{-algebra structures on }X\Bigr)\longleftrightarrow \Bigl(ext{endofr maps }S o \langle X,X
angle \Bigr).$$

Algebraic colimits of monads

Definition

An algebraic colimit of a diagram $D: J \rightarrow Monads$ is a monad T with an equivalence of categories over C:

$$T ext{-}\operatorname{\mathsf{Alg}}\stackrel{\simeq}{\longrightarrow} \operatorname{\mathsf{lim}}_{j\in J} D_j ext{-}\operatorname{\mathsf{Alg}}$$

This is a limit in $Cat_{\mathcal{C}}$, so it means that

 $\begin{array}{rcl} T-algebra structures on X} & \longleftrightarrow & \mbox{compatible} & \mbox{families} & \mbox{of} \\ D_{j}-algebra structures on X.} \end{array}$

Theorem

Every algebraic colimit is a colimit in the category of monads, and the converse holds if C is locally small and complete.

Example 0: coproducts

Example

The algebraically-initial monad has, as category of algebras, the terminal object of Cat_/C, namely C itself. Thus, it is the identity monad Id.

Example 0: coproducts

Example

The algebraically-initial monad has, as category of algebras, the terminal object of Cat_/C, namely C itself. Thus, it is the identity monad Id.

Example

An algebra structure for the algebraic coproduct $T_1 \sqcup T_2$ consists of unrelated T_1 -algebra and T_2 -algebra structures. Recall a semigroup is a magma whose operation is associative.

- Let $S_2(X) = X \times X$; so S_2 -algebras are magmas and $\overline{S_2}X$ is the free magma on X.
- 2 Let S₃(X) = X × X × X, so S₃-algebras are sets equipped with a ternary operation.
- A magma X has two induced ternary operations x(yz) and (xy)z. This yields two functors

 S_2 -Alg \Rightarrow S_3 -Alg

whose equalizer is the category of semigroups.

4 Thus, the algebraic coequalizer of the corresponding two monad morphisms $\overline{S_3} \rightrightarrows \overline{S_2}$ is the monad for semigroups.

Definition

A presentation of a group (or other algebraic structure) is a coequalizer of maps between free groups:

$$F\langle R \rangle \rightrightarrows F\langle X \rangle \to G$$

Definition

A presentation of a group (or other algebraic structure) is a coequalizer of maps between free groups:

$$F\langle R \rangle \rightrightarrows F\langle X \rangle \to G$$

Definition

A generalized presentation of an object is an iterated colimit of diagrams of free objects.

Definition

A generalized presentation of a monad is an (algebraic) iterated colimit of diagrams of (algebraically-)free monads.

Cell complexes	1-monads		Cell monads	HITs
Example	2 [.] localiz	ration		

Let $f : A \rightarrow B$ be a fixed morphism.

- Let $S_f(X) = C(A, X) \cdot B$ and $S_A(X) = C(A, X) \cdot A$ and $S_B(X) = C(B, X) \cdot B$.
- ② An S_f-algebra X is equipped with a map C(A, X) · B → X, or equivalently C(A, X) → C(B, X).
- **③** An *S_f*-algebra has two *S_A*-algebra structures: "evaluation" and the composite $C(A, X) \cdot A \xrightarrow{f} C(A, X) \cdot B \rightarrow X$.
- G These coincide iff the S_f-algebra structure C(A, X) → C(B, X) is a right inverse to (- ∘ f) : C(B, X) → C(A, X).
- **5** Similarly, an S_f -algebra has two S_B -algebra structures, which coincide iff the S_f -algebra structure is a left inverse to $(-\circ f)$.

6 The joint equalizer of the two parallel pairs

consists of X for which $(-\circ f) : \mathcal{C}(B, X) \to \mathcal{C}(A, X)$ has a (necc. unique) two-sided inverse — i.e. the *f*-local objects.

7 Thus, the joint algebraic coequalizer of the pairs

is the *f*-localization (the "free *f*-local object" monad).

Example 3: combining structures

Suppose instead of one morphism $f : A \to B$ we have a set of them, $\{f_i : A_i \to B_i\}_{i \in I}$.

- **1** We could generalize the construction of L_f to $L_{\{f_i\}}$.
- **2** Or we could simply take the algebraic coproduct $\coprod_{i \in I} L_{f_i}$, whose algebras are equipped with (unrelated) L_{f_i} -algebra structures, hence f_i -local for all *i*.

- **2** Presentations of 1-monads
- **3** Algebraic model category theory
- Presentations of homotopical monads
- 5 More abstract cell complexes
- 6 Higher Inductive Types

Bringing in the homotopy theory

Assumption

 ${\cal C}$ is a presheaf category with a right proper simplicial model structure in which the cofibrations are the monomorphisms.

(For most of what follows, this is much more than necessary.)

Examples:

- Simplicial sets
- The injective model structure on simplicial presheaves
- Any right proper localization of the latter
- Any locally presentable, locally cartesian closed ∞-category has such a presentation (Cisinski, Gepner–Kock)

Algebraic fibrant replacement

Let \mathcal{J} be the generating acyclic cofibrations. Copying only the first half of the localization construction, we obtain a monad R whose algebras are algebraically fibrant: objects X equipped with chosen lifts against all \mathcal{J} -maps.

Theorem (Garner)

Each unit map $\eta_X : X \to RX$ is an acyclic cofibration.

Thus, R is a "fibrant replacement monad".

More generally, we have a monad **R** on C^{\rightarrow} whose algebras are algebraic fibrations: maps $g: Y \rightarrow X$ equipped with chosen lifts against all \mathcal{J} -maps.

Theorem (Garner)

For any $g: Y \to X$, the unit $\eta_g: g \to \mathbf{R}g$ looks like

$$\begin{array}{c} Y \longrightarrow Eg \\ \downarrow & \downarrow \\ X \longrightarrow X \end{array}$$

and $Y \rightarrow Eg$ is an acyclic cofibration.

(In fact, we have a whole "algebraic weak factorization system": cofibrant replacement is also a comonad.)

Theorem (Garner)

If $g: Y \to X$ and $f: Z \to Y$ are algebraic fibrations, then gf is naturally an algebraic fibration, and the square

is a morphism of **R**-algebras.

Theorem (Garner)

If $g: Y \to X$ and $f: Z \to Y$ are algebraic fibrations, then gf is naturally an algebraic fibration, and the square

is a morphism of R-algebras.

Corollary

If $f : Z \rightarrow Y$ is an algebraic fibration and Y is algebraically fibrant, then Z is algebraically fibrant and f is a map of R-algebras.

1 Cell complexes

- 2 Presentations of 1-monads
- 3 Algebraic model category theory
- **4** Presentations of homotopical monads
- **5** More abstract cell complexes
- 6 Higher Inductive Types

We can repeat the 1-categorical construction, with mapping spaces and homotopies instead of hom-sets and equalities.

- $S_f(X) = Map(A, X) \otimes B$, with Map(A, X) the simplicial mapping space and \otimes the simplicial tensor.
- **2** Instead of the coequalizer of $\overline{S_A} \rightrightarrows \overline{S_f}$ we take the pushout of

$$\begin{array}{c}
\overline{\mathbf{2} \otimes S_1} = \overline{S_A} \sqcup \overline{S_A} \longrightarrow \overline{S_f} \\
\downarrow \\
\overline{\Delta^1 \otimes S_A} \longrightarrow P_f
\end{array}$$

A P_f -algebra is equipped with a right homotopy inverse to $(-\circ f)$: Map $(B, X) \rightarrow$ Map(A, X).

Homotopical localization

- **3** Instead of a joint coequalizer/pushout using a single copy of $\overline{S_f}$, we take the coproduct of P_f and its dual.
 - The algebras are equipped with both a left and a right homotopy inverse to $(- \circ f)$, perhaps different.
 - The existence of such is still equivalent to $(-\circ f)$ being a homotopy equivalence.
 - The space of (left inverse, right inverse) pairs is contractible (if nonempty); the space of two-sided homotopy inverses is not.

Let's call the resulting monad \tilde{L}_f .

BUT!!!

- \tilde{L}_f does not produce fibrant objects.
- Map(A, X) has the wrong homotopy type if X is not fibrant! So non-fibrant L
 _f-algebras need not even have f-local homotopy type.
- In particular, $\tilde{L}_f X$ need not have *f*-local homotopy type.

BUT!!!

- \tilde{L}_f does not produce fibrant objects.
- Map(A, X) has the wrong homotopy type if X is not fibrant! So non-fibrant L
 _f-algebras need not even have f-local homotopy type.
- In particular, $\tilde{L}_f X$ need not have *f*-local homotopy type.

Simple answer

Take the algebraic coproduct $L_f = \tilde{L}_f \sqcup R$ with the fibrant replacement monad.

- L_f -algebras are \tilde{L}_f -algebras with an unrelated R-structure.
- In particular, they are fibrant, hence f-local; including $L_f X$.

So $L_f X$ is f-local; but is it the f-localization?

- L_fX is strictly initial in the category of "algebraically *f*-local", algebraically fibrant objects under X (and maps that preserve the algebraic structure).
- The *f*-localization is supposed to be homotopy initial in the category of *f*-local, fibrant objects under X (and all maps).

Acyclically cofibrant algebras

Theorem

If $p: Y \to L_f X$ is a (non-algebraic) fibration where Y is f-local, then any section of p over X extends to a section of p:

Acyclically cofibrant algebras

If $p: Y \to L_f X$ is a (non-algebraic) fibration where Y is f-local, then any section of p over X extends to a section of p.

Proof.

- **1** Since Y is f-local and p is a fibration, we can choose an \tilde{L}_{f} -algebra structure on Y making p an \tilde{L}_{f} -algebra map.
- **2** Choose an arbitrary **R**-algebra structure on p.
- By composition, Y becomes an R-algebra, hence an L_f = (L̃_f ⊔ R)-algebra, and p an L_f-algebra map.
- **④** Since $L_f X$ is the free L_f -algebra on X, the given section $X \to Y$ induces an L_f -algebra map $L_f X \to Y$.
- **5** Since the composite $L_f X \to Y \to L_f X$ is again an L_f -algebra map, by uniqueness it is the identity.

Theorem

 $L_f X$ is the f-localization of X.

Proof.

We will show Map(L_fX, Z) → Map(X, Z) is an acyclic fibration for any f-local fibrant Z, by lifting in an arbitrary

$$\begin{array}{ccc} X & \xrightarrow{r} & Z^{\Delta^n} \\ & & \downarrow \\ & & \downarrow \\ L_f X & \xrightarrow{s} & Z^{\partial \Delta^n} \end{array}$$

2 Since $L_f X$, $Z^{\partial \Delta^n}$, and Z^{Δ^n} are *f*-local, so is $s^* Z^{\Delta^n}$.

3 The map $s^*Z^{\Delta^n} \to L_f X$ is a fibration, so it has a section by the previous theorem.

1 Cell complexes

- 2 Presentations of 1-monads
- 3 Algebraic model category theory
- Presentations of homotopical monads
- **5** More abstract cell complexes
- **6** Higher Inductive Types

What is special about localization, and what isn't? We need:

- **1** *T*-algebra structures can be rectified along fibrations.
- 2 T-algebra structures lift to path objects, etc.

What is special about localization, and what isn't? We need:

- 1 *T*-algebra structures can be rectified along fibrations.
- 2 T-algebra structures lift to path objects, etc.

These work for localization because the pushout

$$\begin{array}{c}
\overline{\mathbf{2} \otimes S_1} = \overline{S_A} \sqcup \overline{S_A} \longrightarrow \overline{S_f} \\
\downarrow \\
\overline{\Delta^1 \otimes S_A} \longrightarrow P_f
\end{array}$$

is homotopically well-behaved.

Definition

• A generating cofibration of monads is a map

$\overline{S \times A} \to \overline{S \times B}$

where S is a well-behaved endofunctor and $A \rightarrow B$ is a generating cofibration.

- A cell complex of monads is a composite of pushouts of generating cofibrations.
- A cell monad T is such that Id → T is a cell complex. (Recall Id is the initial object in the category of monads.)

Homotopy theory of cell monads, I

"T-algebra structures lift to path objects, etc."

Theorem

If T is a cell monad, then the category T-Alg_f of fibrant T-algebras is a fibration category \acute{a} là Brown.

Sketch of proof.

Fibrations, weak equivalences, and limits are inherited from the base category. For factorizations, we argue inductively up the cell complex $Id \rightarrow T$. In the case of a generating cofibration, we factor downstairs and lift the $(S \times B)$ -algebra structure, using the pushout product.

Homotopy theory of cell monads, II

Theorem (in progress)

- **1** If $T_1 \rightarrow T_2$ is a cell complex, then T_2 -Alg_f $\rightarrow T_1$ -Alg_f is almost a "fibration of fibration categories" á là Szumiło.
- 2 The pushouts in a cell complex yield homotopy pullbacks of fibration categories, hence (Szumiło) pullbacks of ∞-cats.
- **3** For a cell monad T,
 - the homotopy ∞-category of T-Alg_f coincides with the algebras for the analogous ∞-monad;
 - any map of ∞ -algebras can be presented by a T-algebra fibration; and hence
 - free $(T \sqcup R)$ -algebras present free objects of this ∞ -category.

Homotopy theory of cell monads, II

Theorem (in progress)

- **1** If $T_1 \rightarrow T_2$ is a cell complex, then T_2 -Alg_f $\rightarrow T_1$ -Alg_f is almost a "fibration of fibration categories" á là Szumiło.
- 2 The pushouts in a cell complex yield homotopy pullbacks of fibration categories, hence (Szumiło) pullbacks of ∞-cats.
- **3** For a cell monad T,
 - the homotopy ∞-category of T-Alg_f coincides with the algebras for the analogous ∞-monad;
 - any map of ∞ -algebras can be presented by a T-algebra fibration; and hence
 - free ($T \sqcup R$)-algebras present free objects of this ∞ -category.

tl;dr: Cell monads are homotopically meaningful.

Replacing big messy cell complexes with smaller and simpler but more abstract ones

Before

The *f*-localization of a space is a cell complex with transfinitely many cells.

After

The *f*-localization monad is a cell monad with four cells.

Question

Why not work directly with presentations of ∞ -monads?

In theory, we could. But reasons to use cell monads include:

- 1 We can leverage Kelly's existing "package".
- Pits in a model-categorical framework, if we prefer that for other reasons.
- S Free (T ⊔ R)-algebras have a stronger universal property than just ∞-freeness.

Question

Why not work directly with presentations of ∞ -monads?

In theory, we could. But reasons to use cell monads include:

- 1 We can leverage Kelly's existing "package".
- Pits in a model-categorical framework, if we prefer that for other reasons.
- SFree (T ⊔ R)-algebras have a stronger universal property than just ∞-freeness. ... and it corresponds exactly to "induction principles" in type theory.

1 Cell complexes

- 2 Presentations of 1-monads
- 3 Algebraic model category theory
- Presentations of homotopical monads
- 5 More abstract cell complexes
- 6 Higher Inductive Types

Higher Inductive Types

Slogan

Higher inductive types are a notation for describing families of cell monads that exist "uniformly" in all nice model categories.

Example

For $f : A \rightarrow B$, the *f*-localization $L_f X$ is generated by four "constructors" (monad cells):

1 ext :
$$\forall (g : A \rightarrow L_f X), B \rightarrow L_f X$$

2 rinv : $\forall (g : A \rightarrow L_f X), \forall (a : A), ext_g(f(a)) = g(a)$
3 ext' : $\forall (g : A \rightarrow L_f X), B \rightarrow L_f X$
4 linv : $\forall (h : B \rightarrow L_f X), \forall (b : B), ext'_{hof}(b) = h(b)$

Homotopy type theory

Slogan

Type theory is a system of notations for describing constructions that exist "uniformly" in all categories of a certain sort.

Each "type constructor" represents a category-theoretic operation, e.g. $x : A \vdash \prod_{y:B(x)} C$ represents the right adjoint to pullback along a fibration $B \rightarrow A$.

Slogan

Homotopy type theory is a system of notations for describing constructions that exist in all "categories with homotopy theory".

Fine print: there are unresolved coherence questions in making this completely precise in generality.

- Traditional type theory has "ordinary" inductive types, which describe free monads and coproducts of monads.
- These include coproducts of spaces, but not other colimits.
- HITs were invented to describe other colimits in type theory.
- Only afterwards did we discover cell monads, when trying to model them categorically.

Recursion and induction for \mathbb{N}

Recursion principle

Given any X together with $x_0: 1 \to X$ and $x_s: \mathbb{N} \times X \to X$, there is an $f: \mathbb{N} \to X$ such that

$$f(0) = x_0$$

$$f(n+1) = x_s(n, f(n))$$

Recursion and induction for $\mathbb N$

Recursion principle

Given any X together with $x_0 : 1 \to X$ and $x_s : \mathbb{N} \times X \to X$, there is an $f : \mathbb{N} \to X$ such that

$$f(0) = x_0$$

$$f(n+1) = x_s(n, f(n))$$

Induction principle

Given any property P(n) such that P(0) and $P(n) \rightarrow P(n+1)$, we have $\forall n, P(n)$.

Generalized induction principle

Given any map $p: C \to \mathbb{N}$ together with $x_0: p^{-1}(0)$ and functions $x_{s,n}: p^{-1}(n) \to p^{-1}(n+1)$ for all n, we have a section $f: \mathbb{N} \to C$ of p such that

$$f(0) = x_0$$

$$f(n+1) = x_{s,n}(f(n))$$

Type-theoretic induction for \mathbb{N}

Generalized induction principle

Given any map $p: C \to \mathbb{N}$ together with $x_0: p^{-1}(0)$ and functions $x_{s,n}: p^{-1}(n) \to p^{-1}(n+1)$ for all n, we have a section $f: \mathbb{N} \to C$ of p such that

$$f(0) = x_0$$

$$f(n+1) = x_{s,n}(f(n))$$

- $C = \mathbb{N} \times X$ gives recursion.
- $C = \{ n \in \mathbb{N} \mid P(n) \}$ gives induction.

Generalized induction principle

Given any map $p: C \to \mathbb{N}$ together with $x_0: 1 \to C$ and $x_s: C \to C$ such that

we have a section $f : \mathbb{N} \to C$ of p such that

$$f(0) = x_0$$

$$f(n+1) = x_s(f(n))$$

Endofunctor induction

Generalized induction principle

Let S(X) = 1 + X. Then any S-algebra map $C \to \mathbb{N}$ has a section.

In type theory, these maps are restricted to be fibrations, corresponding to "dependent types".

Endofunctor induction

Generalized induction principle

Let S(X) = 1 + X. Then any S-algebra map $C \to \mathbb{N}$ has a section.

In type theory, these maps are restricted to be fibrations, corresponding to "dependent types".

Ordinary inductive types

For any well-behaved endofunctor S, there is an S-algebra W_S such that any S-algebra fibration $C \rightarrow W_S$ has a section.

 $(\mathsf{It's}\ (\overline{S}\sqcup R)(\emptyset).)$

Higher inductive types

Higher inductive types

For any cell monad T, there is a T-algebra W_T such that any T-algebra fibration $C \to W_T$ has a section.

Gives type-theoretic notations for:

- Small concrete cell complexes (spheres, tori, etc.)
- Homotopy colimits
- Localization
- Postnikov towers
- Spectrification
- And much more!