Categories, functors, and profunctors are a free cocompletion

Michael Shulman ${ }^{1}$ Richard Garner ${ }^{2}$
${ }^{1}$ Institute for Advanced Study
Princeton, NJ, USA
${ }^{2}$ Macquarie Univesrity
Syndey, NSW, Australia

October 27, 2012
(1) The problem
(2) Progress and hints
(3) The solution
(4) Concluding remarks

Monads

Definition (Bénabou, 1967)

A monad in a bicategory consists of

- An object A,
- A morphism $t: A \rightarrow A$,
- 2-cells $m: t t \rightarrow t$ and $i: 1_{A} \rightarrow t$, and
- Associativity and unitality axioms.
- Equivalently, a lax functor out of 1 .
- Includes ordinary monads, enriched ones, internal ones, indexed ones, monoidal ones, ...
- The "Eilenberg-Moore object" A^{t} is a lax limit, and the "Kleisli object" A_{t} is a lax colimit (Street).

Example

A monad in the bicategory of spans (of sets) consists of

- A set A_{0},
- A span $A_{0} \leftarrow A_{1} \rightarrow A_{0}$,
- Functions $m: A_{1} \times{ }_{A_{0}} A_{1} \rightarrow A_{1}$ and $i: A_{0} \rightarrow A_{1}$, and
- Associativity and unitality axioms.

In other words, it's nothing but a (small) category!

- In similar bicategories, we obtain internal categories, enriched categories, ...

Definition (Street, 1972)

A lax monad morphism $(A, t) \rightarrow(B, s)$ consists of

- A morphism $f: A \rightarrow B$,
- A 2-cell $\bar{f}: s f \rightarrow f t$, and
- Some axioms.

Definition (Street, 1972)

A lax monad morphism $(A, t) \rightarrow(B, s)$ consists of

- A morphism $f: A \rightarrow B$,
- A 2 -cell $\bar{f}: s f \rightarrow f t$, and
- Some axioms.
- = a lax natural transformation between lax functors.
- Induces a morphism $A^{t} \rightarrow B^{s}$ between E-M objects.
- Colax monad morphisms = colax natural transformations, and induce morphisms $A_{t} \rightarrow B_{s}$ between Kleisli objects.

Example

A lax monad morphism in the bicategory of spans consists of

- A span $A_{0} \leftarrow F_{0} \rightarrow B_{0}$,
- A morphism

Example

A colax monad morphism in the bicategory of spans consists of

- A span $A_{0} \leftarrow F_{0} \rightarrow B_{0}$,
- A morphism

Example

A colax monad morphism in the bicategory of spans consists of

- A span $A_{0} \leftarrow F_{0} \rightarrow B_{0}$,
- A morphism

Morphisms of categories?

Example

A functor consists of

- A function $f_{0}: A_{0} \rightarrow B_{0}$
- A morphism

Morphisms of categories?

Example

A functor consists of

- A function $f_{0}: A_{0} \rightarrow B_{0}$
- A morphism

Example

A functor consists of

- A function $f_{0}: A_{0} \rightarrow B_{0}$
- A morphism

functor $=\begin{aligned} & \text { colax monad morphism such that the span } \\ & \\ & A_{0} \leftarrow F_{0} \rightarrow B_{0} \text { is a mere function } A_{0} \rightarrow B_{0} .\end{aligned}$

2-cells of monads

Definition (Street,1972)

For lax f, g, a monad 2-cell $(A, t) \xrightarrow[g]{\Downarrow}(B, s)$ consists of

- A 2-cell $f \rightarrow g$
- Satisfying some axioms.
- = a modification between lax natural transformations.
- Induces a 2-cell $A^{t} \xrightarrow{\Downarrow} B^{s}$ between E-M objects.
- If f, g are colax, monad 2-cells $=$ modifications between colax transformations, and induce 2-cells between Kleisli objects.

Example

For categories A, B and colax monad morphisms $f, g: A \rightarrow B$, a monad 2-cell $A \underset{{\underset{g}{g}}_{\Downarrow}^{f}}{\stackrel{f}{\Downarrow}} B$ consists of

- A morphism

- Satisfying some axioms.

Example

For categories A, B and functors $f, g: A \rightarrow B$,
a monad 2-cell $A{\underset{\sim}{g}}_{\frac{f}{\Downarrow}}^{>} B$ consists of

- A morphism

- Satisfying some axioms.

Example

For categories A, B and functors $f, g: A \rightarrow B$,
a monad 2-cell $A{\underset{\sim}{g}}_{\frac{f}{\Downarrow}}^{>} B$ consists of

- A morphism

- Satisfying some axioms.
i.e. just an equality $f=g$!
(1) The problem
(2) Progress and hints
(3) The solution
(4) Concluding remarks

Profunctors

Definition (Bénabou, 1967?)

For categories A, B, a profunctor $A \rightarrow B$ consists of

- A functor $H: B^{\text {op }} \times A \rightarrow$ Set

Definition (Bénabou, 1967?)

For categories A, B, a profunctor $A \rightarrow B$ consists of

- Sets $H(b, a)$ for $a \in A_{0}, b \in B_{0}$
- Actions

$$
\begin{aligned}
H(b, a) \times A\left(a, a^{\prime}\right) & \rightarrow H\left(b, a^{\prime}\right) \quad \text { and } \\
B\left(b^{\prime}, b\right) \times H(b, a) & \rightarrow H\left(b^{\prime}, a\right)
\end{aligned}
$$

- Associativity and unitality axioms.

Definition (Bénabou, 1967?)

For categories A, B, a profunctor $A \rightarrow B$ consists of

- Spans $A_{0} \leftarrow H \rightarrow B_{0}$
- Actions

$$
\begin{array}{ll}
H \times{ }_{A_{0}} A_{1} \rightarrow H & \text { and } \\
B_{1} \times{ }_{B_{0}} H \rightarrow H &
\end{array}
$$

- Associativity and unitality axioms.

Definition (Bénabou, 1973)

For monads $(A, t),(B, s)$ in a bicategory, a module $A \rightarrow B$ is

- A morphism $h: A \rightarrow B$
- Actions

$$
\begin{array}{ll}
h t \rightarrow h & \text { and } \\
s h \rightarrow h
\end{array}
$$

- Associativity and unitality axioms.
- Modules in spans = profunctors
- Also get enriched profunctors, internal profunctors, ...

Definition

The composite of profunctors $H: A \rightarrow B$ and $K: B \rightarrow C$ is

$$
(K H)(c, a)=\int^{b \in B} K(c, b) \times H(b, a)
$$

Definition

The composite of profunctors $H: A \rightarrow B$ and $K: B \rightarrow C$ is

$$
\begin{gathered}
(K H)(c, a)=\int^{b \in B} K(c, b) \times H(b, a) \\
=\operatorname{coeq}\left(\sum_{b, b^{\prime} \in B_{0}} K\left(c, b^{\prime}\right) \times B\left(b^{\prime}, b\right) \times H(b, a) \rightrightarrows \sum_{b \in B_{0}} K(c, b) \times H(b, a)\right)
\end{gathered}
$$

Definition

The composite of profunctors $H: A \rightarrow B$ and $K: B \rightarrow C$ is

$$
\begin{gathered}
(K H)(c, a)=\int^{b \in B} K(c, b) \times H(b, a) \\
=\operatorname{coeq}\left(\sum_{b, b^{\prime} \in B_{0}} K\left(c, b^{\prime}\right) \times B\left(b^{\prime}, b\right) \times H(b, a) \rightrightarrows \sum_{b \in B_{0}} K(c, b) \times H(b, a)\right) \\
=\operatorname{coeq}\left(K \times_{B_{0}} B_{1} \times{ }_{B_{0}} H \rightrightarrows K \times_{B_{0}} H\right)
\end{gathered}
$$

Definition

A bicategory \mathcal{B} has local coequalizers if all hom-categories have coequalizers and composition preserves them in each variable.

Definition

In this case, the composite of modules $h:(A, t) \rightarrow(B, s)$ and $k:(B, s) \rightarrow(C, r)$ is

$$
\operatorname{coeq}(k s h \rightrightarrows k h)
$$

We have a bicategory $\operatorname{Mod}_{1}(\mathcal{B})$ whose

- objects are monads in \mathcal{B}, and
- morphisms are modules

Theorem (Street 1981, Carboni-Kasangian-Walters 1987)
(1) $\operatorname{Mod}_{1}\left(\operatorname{Mod}_{1}(\mathcal{B})\right) \simeq \operatorname{Mod}_{1}(\mathcal{B})$.
(2) \mathcal{C} is of the form $\operatorname{Mod}_{1}(\mathcal{B})$ iff it has

- Local coequalizers, and
- Kleisli objects for monads.

Theorem (Street 1981, Carboni-Kasangian-Walters 1987)

(1) $\operatorname{Mod}_{1}\left(\operatorname{Mod}_{1}(\mathcal{B})\right) \simeq \operatorname{Mod}_{1}(\mathcal{B})$.
(2) \mathcal{C} is of the form $\operatorname{Mod}_{1}(\mathcal{B})$ iff it has

- Local coequalizers, and
- Kleisli objects for monads.

Example

In $\mathcal{P r o f}=\operatorname{Mod}_{1}(\mathcal{S}$ pan $)$, a monad on a category A is

- A category A^{\prime} with the same objects as A, and
- An identity-on-objects functor $A \rightarrow A^{\prime}$.

Its Kleisli object is just A^{\prime}.

Definition (Wood 1982)

A proarrow equipment consists of

- Two bicategories \mathcal{K} and \mathcal{M} with the same objects,
- An identity-on-objects and locally fully faithful pseudofunctor $(-) . \mathcal{K} \rightarrow \mathcal{M}$,
- Such that every morphism f_{\bullet} has a right adjoint in \mathcal{M}.

Definition (Wood 1982)

A proarrow equipment consists of

- Two bicategories \mathcal{K} and \mathcal{M} with the same objects,
- An identity-on-objects and locally fully faithful pseudofunctor $(-) . \mathcal{K} \rightarrow \mathcal{M}$,
- Such that every morphism f_{\bullet} has a right adjoint in \mathcal{M}.

Examples

- $\mathcal{K}=\mathcal{C}$ at, $\mathcal{M}=\mathcal{P r o f}$, and for a functor $f: A \rightarrow B$,

$$
f_{\bullet}(b, a)=B(b, f(a))
$$

Definition (Wood 1982)

A proarrow equipment consists of

- Two bicategories \mathcal{K} and \mathcal{M} with the same objects,
- An identity-on-objects and locally fully faithful pseudofunctor $(-) . \mathcal{K} \rightarrow \mathcal{M}$,
- Such that every morphism f_{\bullet} has a right adjoint in \mathcal{M}.

Examples

- $\mathcal{K}=\mathcal{C}$ at, $\mathcal{M}=\mathcal{P r o f}$, and for a functor $f: A \rightarrow B$,

$$
f_{\bullet}(b, a)=B(b, f(a))
$$

- $\mathcal{K}=$ Set, $\mathcal{M}=\mathcal{S}$ pan, and for a function $f: A \rightarrow B$,

$$
f_{\bullet}=A=A \xrightarrow{f} B
$$

Theorem (Lack-Street 2002)

In the free cocompletion of \mathcal{K} under Kleisli objects,

- The objects are monads in \mathcal{K},
- The morphisms are colax monad morphisms in \mathcal{K},
- The 2-cells $(A, t) \xrightarrow[g]{\Downarrow}(B, s)$ are
- 2-cells $f \rightarrow s g$ in \mathcal{K},
- Satisfying axioms.

Example

For categories A, B and colax monad morphisms $f, g: A \rightarrow B$:

Example

For categories A, B and colax monad morphisms $f, g: A \rightarrow B$:

2-cells of categories

Example

For categories A, B and functors $f, g: A \rightarrow B$:

Example

For categories A, B and functors $f, g: A \rightarrow B$:

A natural transformation!

Observation (Lack-S. 2012)

There is a cartesian closed 2-category \mathscr{F} such that
(1) \mathscr{F}-enriched categories
are the same as
(2) data consisting of

- 2 -categories \mathcal{K} and \mathcal{M} with the same objects, and
- an identity-on-objects and locally fully faithful 2 -functor $\mathcal{K} \rightarrow \mathcal{M}$.

Observation (Lack-S. 2012)

There is a cartesian closed 2-category \mathscr{F} such that
(1) \mathscr{F}-enriched categories
are the same as
(2) data consisting of

- 2-categories \mathcal{K} and \mathcal{M} with the same objects, and
- an identity-on-objects and locally fully faithful 2 -functor $\mathcal{K} \rightarrow \mathcal{M}$.

The objects of \mathscr{F} are fully faithful functors $A_{\tau} \hookrightarrow A_{\lambda}$. An \mathscr{F}-category \mathcal{B} has homs

$$
\mathcal{B}(x, y)=\left(\mathcal{B}_{\tau}(x, y) \hookrightarrow \mathcal{B}_{\lambda}(x, y)\right)
$$

We call the objects of $\mathcal{B}_{\tau}(x, y)$ tight morphisms, and those of $\mathcal{B}_{\lambda}(x, y)$ loose.
(1) The problem
(2) Progress and hints
(3) The solution

(4) Concluding remarks

- Categories are monads in spans.
- Functors are colax monad morphisms whose underlying span is a function.
- Natural transformations are 2-cells between these in the free cocompletion under Kleisli objects.
- Categories are monads in spans.
- Functors are colax monad morphisms whose underlying span is a function.
- Natural transformations are 2-cells between these in the free cocompletion under Kleisli objects.
- Functions and spans form a proarrow equipment.
- So do functors and profunctors.
- Strict proarrow equipments are special \mathscr{F}-enriched categories.
- Categories are monads in spans.
- Functors are colax monad morphisms whose underlying span is a function.
- Natural transformations are 2-cells between these in the free cocompletion under Kleisli objects.
- Functions and spans form a proarrow equipment.
- So do functors and profunctors.
- Strict proarrow equipments are special \mathscr{F}-enriched categories.
- Profunctors are modules in spans.
- Modules exist in any bicategory with local coequalizers.
- Mod_{1} is idempotent on bicategories with local coequalizers, and its image is those with Kleisli objects.

Theorem (Garner-S.)

There is a monoidal bicategory \mathscr{F}_{1} such that
(1) \mathscr{F}_{1}-enriched bicategories

are the same as

(2) data consisting of

- bicategories \mathcal{K} and \mathcal{M} with the same objects, and
- an identity-on-objects and locally fully faithful pseudofunctor $\mathcal{K} \rightarrow \mathcal{M}$, such that
- \mathcal{M} has local coequalizers.

Theorem (Garner-S.)

There is a monoidal bicategory \mathscr{F}_{1} such that
(1) \mathscr{F}_{1}-enriched bicategories

are the same as

(2) data consisting of

- bicategories \mathcal{K} and \mathcal{M} with the same objects, and
- an identity-on-objects and locally fully faithful pseudofunctor $\mathcal{K} \rightarrow \mathcal{M}$, such that
- \mathcal{M} has local coequalizers.

Theorem (Garner-S.)

The \mathscr{F}_{1}-bicategory (Cat $\rightarrow \mathcal{P r o f}$) is the free cocompletion of the \mathscr{F}_{1}-bicategory (Set \rightarrow Span) under a type of \mathscr{F}_{1}-enriched colimit called tight Kleisli objects.

Theorem (Garner-S.)

There is a monoidal bicategory \mathscr{C}_{1} such that
(1) \mathscr{C}_{1}-enriched bicategories
are the same as
(2) bicategories with local coequalizers.

Theorem (Garner-S.)
The \mathscr{C}_{1}-bicategory \mathcal{P} rof is the free cocompletion of the \mathscr{C}_{1}-bicategory \mathcal{S} pan under \mathscr{C}_{1}-enriched Kleisli objects.

Theorem (Garner-S.)

There is a monoidal bicategory \mathscr{C}_{1} such that
(1) \mathscr{C}_{1}-enriched bicategories are the same as
(2) bicategories with local coequalizers.

Theorem (Garner-S.)
The \mathscr{C}_{1}-bicategory $\operatorname{Mod}_{1}(\mathcal{B})$ is the free cocompletion of a \mathscr{C}_{1}-bicategory \mathcal{B} under \mathscr{C}_{1}-enriched Kleisli objects.

Theorem (Garner-S.)

There is a monoidal bicategory \mathscr{C}_{1} such that
(1) \mathscr{C}_{1}-enriched bicategories are the same as
(2) bicategories with local coequalizers.

Theorem (Garner-S.)
The \mathscr{C}_{1}-bicategory $\operatorname{Mod}_{1}(\mathcal{B})$ is the free cocompletion of a \mathscr{C}_{1}-bicategory \mathcal{B} under \mathscr{C}_{1}-enriched Kleisli objects.

Moreover, Kleisli objects are Cauchy \mathscr{C}_{1}-colimits. This explains why $\operatorname{Mod}_{1}\left(\operatorname{Mod}_{1}(\mathcal{B})\right) \simeq \operatorname{Mod}_{1}(\mathcal{B})$.

Theorem (Garner-S.)
The classical theory of enriched categories, weighted limits, and free cocompletions can all be categorified into a theory of bicategories enriched over a monoidal bicategory.

Theorem (Garner-S.)
The classical theory of enriched categories, weighted limits, and free cocompletions can all be categorified into a theory of bicategories enriched over a monoidal bicategory.

Proof.

40 pages. Thanks Richard!!

Definition

$\mathscr{C}_{1}=$ the 2-category of categories with coequalizers and coequalizer-preserving functors.

Theorem

\mathscr{C}_{1} has a (bicategorical) monoidal structure such that functors $A \otimes B \rightarrow C$ are equivalent to functors $A \times B \rightarrow C$ preserving coequalizers in each variable.

Definition

$\mathscr{C}_{1}=$ the 2-category of categories with coequalizers and coequalizer-preserving functors.

Theorem

\mathscr{C}_{1} has a (bicategorical) monoidal structure such that functors $A \otimes B \rightarrow C$ are equivalent to functors $A \times B \rightarrow C$ preserving coequalizers in each variable.

Theorem

In \mathscr{C}_{1}, Eilenberg-Moore objects (which are constructed as in \mathcal{C} at) are also Kleisli objects.

Definition

$\mathscr{C}_{1}=$ the 2-category of categories with coequalizers and coequalizer-preserving functors.

Theorem

\mathscr{C}_{1} has a (bicategorical) monoidal structure such that functors $A \otimes B \rightarrow C$ are equivalent to functors $A \times B \rightarrow C$ preserving coequalizers in each variable.

Theorem

In \mathscr{C}_{1}, Eilenberg-Moore objects (which are constructed as in \mathcal{C} at) are also Kleisli objects.

Note: \mathscr{C}_{1} itself is a bicategory with local coequalizers!

Definition

$\mathscr{F}_{1}=$ the 2-category of fully faithful functors $A_{\tau} \hookrightarrow A_{\lambda}$, where A_{λ} has coequalizers.

Theorem

\mathscr{F}_{1} has a (bicategorical) monoidal structure where $A \otimes B$ is the fully-faithful factorization of

$$
A_{\tau} \times B_{\tau} \longrightarrow A_{\lambda} \otimes B_{\lambda}
$$

Let (A, t) be a monad in an \mathscr{F}_{1}-bicategory \mathcal{B}.

Definition

A tight Kleisli object of (A, t) consists of
(1) A Kleisli object A_{t} of (A, t) in the bicategory \mathcal{B}_{λ}.
(2) The left adjoint $f: A \rightarrow A_{t}$ is tight.
(3) A morphism $A_{t} \rightarrow B$ is tight iff its composite with f is tight.

Let (A, t) be a monad in an \mathscr{F}_{1}-bicategory \mathcal{B}.

Definition

A tight Kleisli object of (A, t) consists of
(1) A Kleisli object A_{t} of (A, t) in the bicategory \mathcal{B}_{λ}.
(2) The left adjoint $f: A \rightarrow A_{t}$ is tight.
(3) A morphism $A_{t} \rightarrow B$ is tight iff its composite with f is tight.

All \mathscr{F}_{1}-weighted colimits look like this: colimits in \mathcal{B}_{λ} such that a certain group of coprojections are tight and "detect tightness".
(1) The problem
(2) Progress and hints
(3) The solution
(4) Concluding remarks

- A monoidal category $\mathcal{V} \rightsquigarrow$ a one-object bicategory $\mathbf{B} \mathcal{V}$.
- Monads in $\mathbf{B} \mathcal{V}=$ monoids in \mathcal{V}.

Definition (Bénabou)

A bicategory-enriched category (or polyad) is the thing such that when you do it in $\mathbf{B} \mathcal{V}$, it gives you \mathcal{V}-enriched categories.

- A monoidal category $\mathcal{V} \rightsquigarrow$ a one-object bicategory $\mathbf{B} \mathcal{V}$.
- Monads in $\mathbf{B} \mathcal{V}=$ monoids in \mathcal{V}.

Definition (Bénabou)

A bicategory-enriched category (or polyad) is the thing such that when you do it in $\mathbf{B} \mathcal{V}$, it gives you \mathcal{V}-enriched categories.

- If \mathcal{B} is locally cocomplete, have a bicategory $\operatorname{Mod}_{\infty}(\mathcal{B})$ of these and modules/profunctors.
- It is the free cocompletion of \mathcal{B} under \mathscr{C}_{∞}-enriched collages, i.e. lax colimits.
- Also have $\mathscr{F}_{\infty} \ldots$
$\operatorname{Mod}(\mathcal{B})$ is not the Cauchy completion of \mathcal{B} as a \mathscr{C}-bicategory (e.g. its idempotents don't split).

Question

Can we characterize the class of colimits that it does have?

Question

What is the full \mathscr{C}-enriched Cauchy completion?

