Categories, functors, and profunctors are a free cocompletion

Michael Shulman¹ Richard Garner²

¹Institute for Advanced Study Princeton, NJ, USA

²Macquarie Univesrity Syndey, NSW, Australia

October 27, 2012

1 The problem

- **2** Progress and hints
- **3** The solution
- **4** Concluding remarks

Monads

Definition (Bénabou, 1967)

A monad in a bicategory consists of

- An object A,
- A morphism $t : A \rightarrow A$,
- 2-cells $m: tt \rightarrow t$ and $i: 1_A \rightarrow t$, and
- Associativity and unitality axioms.
- Equivalently, a lax functor out of 1.
- Includes ordinary monads, enriched ones, internal ones, indexed ones, monoidal ones, ...
- The "Eilenberg-Moore object" A^t is a lax limit, and the "Kleisli object" A_t is a lax colimit (Street).

A monad in the bicategory of spans (of sets) consists of

- A set *A*₀,
- A span $A_0 \leftarrow A_1
 ightarrow A_0$,
- Functions $m: A_1 \times_{A_0} A_1 \to A_1$ and $i: A_0 \to A_1$, and
- Associativity and unitality axioms.

In other words, it's nothing but a (small) category!

• In similar bicategories, we obtain internal categories, enriched categories, ...

Definition (Street, 1972)

A lax monad morphism $(A, t) \rightarrow (B, s)$ consists of

- A morphism $f : A \rightarrow B$,
- A 2-cell $\overline{f} : sf \to ft$, and
- Some axioms.

Definition (Street, 1972)

A lax monad morphism $(A, t) \rightarrow (B, s)$ consists of

- A morphism $f : A \rightarrow B$,
- A 2-cell $\overline{f} : sf \to ft$, and
- Some axioms.
- = a lax natural transformation between lax functors.
- Induces a morphism $A^t \rightarrow B^s$ between E-M objects.
- Colax monad morphisms = colax natural transformations, and induce morphisms $A_t \rightarrow B_s$ between Kleisli objects.

Example

A lax monad morphism in the bicategory of spans consists of

- A span $A_0 \leftarrow F_0 \rightarrow B_0$,
- A morphism

Example

A colax monad morphism in the bicategory of spans consists of

- A span $A_0 \leftarrow F_0 \rightarrow B_0$,
- A morphism

Example

A colax monad morphism in the bicategory of spans consists of

- A span $A_0 \leftarrow F_0 \rightarrow B_0$,
- A morphism

Example

A functor consists of

- A function $f_0: A_0 \rightarrow B_0$
- A morphism

Example

A functor consists of

- A function $f_0: A_0 \rightarrow B_0$
- A morphism

Example

A functor consists of

- A function $f_0: A_0 \rightarrow B_0$
- A morphism

Definition (Street, 1972)

For lax
$$f, g$$
, a monad 2-cell $(A, t) \underbrace{\downarrow}_{g}^{f} (B, s)$ consists of

- A 2-cell $f \rightarrow g$
- Satisfying some axioms.
- = a modification between lax natural transformations.
- Induces a 2-cell $A^t \stackrel{\checkmark}{\longrightarrow} B^s$ between E-M objects.
- If *f*, *g* are colax, monad 2-cells = modifications between colax transformations, and induce 2-cells between Kleisli objects.

2-cells of categories?

Example

For categories A, B and colax monad morphisms $f, g : A \to B$, a monad 2-cell $A \bigoplus_{g}^{f} B$ consists of

• A morphism

• Satisfying some axioms.

2-cells of categories?

Example

• A morphism

• Satisfying some axioms.

2-cells of categories?

Example

For categories A, B and functors
$$f, g : A \to B$$
,
a monad 2-cell $A \underbrace{\bigvee_{g}}^{f} B$ consists of

• A morphism

• Satisfying some axioms.

i.e. just an equality f = g!

1 The problem

2 Progress and hints

3 The solution

4 Concluding remarks

Definition (Bénabou, 1967?)

For categories A, B, a profunctor $A \rightarrow B$ consists of

• A functor $H: B^{\mathrm{op}} \times A \to \mathrm{Set}$

Definition (Bénabou, 1967?)

For categories A, B, a profunctor $A \rightarrow B$ consists of

- Sets H(b, a) for $a \in A_0$, $b \in B_0$
- Actions

$$egin{aligned} H(b,a) imes A(a,a') &
ightarrow H(b,a') & ext{ and } \ B(b',b) imes H(b,a) &
ightarrow H(b',a) \end{aligned}$$

• Associativity and unitality axioms.

Profunctors

Definition (Bénabou, 1967?)

For categories A, B, a profunctor $A \rightarrow B$ consists of

- Spans $A_0 \leftarrow H \rightarrow B_0$
- Actions

• Associativity and unitality axioms.

Modules

Definition (Bénabou, 1973)

For monads (A, t), (B, s) in a bicategory, a module $A \rightarrow B$ is

- A morphism $h: A \rightarrow B$
- Actions

$$egin{array}{ccc} ht
ightarrow h & ext{and} \ sh
ightarrow h & ext{and} \end{array}$$

- Associativity and unitality axioms.
- Modules in spans = profunctors
- Also get enriched profunctors, internal profunctors, ...

The composite of profunctors $H : A \rightarrow B$ and $K : B \rightarrow C$ is

$$(KH)(c,a) = \int^{b\in B} K(c,b) \times H(b,a)$$

The composite of profunctors $H : A \rightarrow B$ and $K : B \rightarrow C$ is

$$(\mathcal{KH})(c,a) = \int^{b\in B} \mathcal{K}(c,b) \times \mathcal{H}(b,a)$$

$$= \operatorname{coeq} \left(\sum_{b,b' \in B_0} K(c,b') \times B(b',b) \times H(b,a) \rightrightarrows \sum_{b \in B_0} K(c,b) \times H(b,a) \right)$$

The composite of profunctors $H : A \rightarrow B$ and $K : B \rightarrow C$ is

$$(KH)(c,a) = \int^{b\in B} K(c,b) \times H(b,a)$$

$$= \operatorname{coeq} \left(\sum_{b,b' \in B_0} K(c,b') \times B(b',b) \times H(b,a) \rightrightarrows \sum_{b \in B_0} K(c,b) \times H(b,a) \right)$$

$$= \operatorname{coeq} \left(K \times_{B_0} B_1 \times_{B_0} H \implies K \times_{B_0} H \right)$$

A bicategory \mathcal{B} has local coequalizers if all hom-categories have coequalizers and composition preserves them in each variable.

Definition

In this case, the composite of modules $h: (A, t) \to (B, s)$ and $k: (B, s) \to (C, r)$ is

 $\operatorname{coeq}(ksh \rightrightarrows kh)$

We have a bicategory $\mathcal{M}od_1(\mathcal{B})$ whose

- objects are monads in \mathcal{B} , and
- morphisms are modules

Theorem (Street 1981, Carboni-Kasangian-Walters 1987)

- $1 \mathcal{M}od_1(\mathcal{M}od_1(\mathcal{B})) \simeq \mathcal{M}od_1(\mathcal{B}).$
- **2** C is of the form $Mod_1(B)$ iff it has
 - Local coequalizers, and
 - Kleisli objects for monads.

Theorem (Street 1981, Carboni-Kasangian-Walters 1987)

- $1 \mathcal{M}od_1(\mathcal{M}od_1(\mathcal{B})) \simeq \mathcal{M}od_1(\mathcal{B}).$
- **2** C is of the form $Mod_1(B)$ iff it has
 - Local coequalizers, and
 - Kleisli objects for monads.

Example

In $\mathcal{P}rof = \mathcal{M}od_1(\mathcal{S}pan)$, a monad on a category A is

- A category A' with the same objects as A, and
- An identity-on-objects functor $A \rightarrow A'$.

Its Kleisli object is just A'.

Functors vs Profunctors

Definition (Wood 1982)

A proarrow equipment consists of

- Two bicategories ${\cal K}$ and ${\cal M}$ with the same objects,
- An identity-on-objects and locally fully faithful pseudofunctor $(-)_{\bullet}: \mathcal{K} \to \mathcal{M},$
- Such that every morphism f_{\bullet} has a right adjoint in \mathcal{M} .

Functors vs Profunctors

Definition (Wood 1982)

A proarrow equipment consists of

- Two bicategories ${\cal K}$ and ${\cal M}$ with the same objects,
- An identity-on-objects and locally fully faithful pseudofunctor $(-)_{\bullet}: \mathcal{K} \to \mathcal{M},$
- Such that every morphism f_{\bullet} has a right adjoint in \mathcal{M} .

Examples

• $\mathcal{K} = \mathcal{C}at$, $\mathcal{M} = \mathcal{P}rof$, and for a functor $f : A \rightarrow B$,

$$f_{ullet}(b,a) = B(b,f(a))$$

Functors vs Profunctors

Definition (Wood 1982)

A proarrow equipment consists of

- Two bicategories ${\cal K}$ and ${\cal M}$ with the same objects,
- An identity-on-objects and locally fully faithful pseudofunctor $(-)_{\bullet}: \mathcal{K} \to \mathcal{M},$
- Such that every morphism f_{\bullet} has a right adjoint in \mathcal{M} .

Examples

• $\mathcal{K} = \mathcal{C}at$, $\mathcal{M} = \mathcal{P}rof$, and for a functor $f : A \rightarrow B$,

$$f_{ullet}(b,a) = B(b,f(a))$$

• $\mathcal{K} = \text{Set}$, $\mathcal{M} = \mathcal{S}pan$, and for a function $f : A \rightarrow B$,

$$f_{\bullet} = A \longrightarrow A \xrightarrow{f} B$$

Theorem (Lack-Street 2002)

In the free cocompletion of \mathcal{K} under Kleisli objects,

- The objects are monads in *K*,
- The morphisms are colax monad morphisms in \mathcal{K} ,

• The 2-cells
$$(A, t) \underbrace{\downarrow}_{g}^{f} (B, s)$$
 are

- 2-cells $f \rightarrow sg$ in \mathcal{K} ,
- Satisfying axioms.

For categories A, B and colax monad morphisms $f, g : A \rightarrow B$:

For categories A, B and colax monad morphisms $f, g : A \rightarrow B$:

For categories A, B and functors $f, g : A \rightarrow B$:

For categories A, B and functors $f, g : A \rightarrow B$:

A natural transformation!

 \mathcal{F} -categories

Observation (Lack-S. 2012)

There is a cartesian closed 2-category ${\mathscr F}$ such that

1 F-enriched categories

are the same as

- 2 data consisting of
 - 2-categories ${\mathcal K}$ and ${\mathcal M}$ with the same objects, and
 - an identity-on-objects and locally fully faithful 2-functor $\mathcal{K} \to \mathcal{M}.$

 \mathcal{F} -categories

Observation (Lack-S. 2012)

There is a cartesian closed 2-category ${\mathscr F}$ such that

1 F-enriched categories

are the same as

- 2 data consisting of
 - 2-categories ${\mathcal K}$ and ${\mathcal M}$ with the same objects, and
 - an identity-on-objects and locally fully faithful 2-functor $\mathcal{K} \to \mathcal{M}.$

The objects of \mathscr{F} are fully faithful functors $A_{\tau} \hookrightarrow A_{\lambda}$. An \mathscr{F} -category \mathcal{B} has homs

$$\mathcal{B}(x,y) = \Big(\mathcal{B}_{ au}(x,y) \hookrightarrow \mathcal{B}_{\lambda}(x,y)\Big).$$

We call the objects of $\mathcal{B}_{\tau}(x, y)$ tight morphisms, and those of $\mathcal{B}_{\lambda}(x, y)$ loose.

1 The problem

- **2** Progress and hints
- **3** The solution
- **4** Concluding remarks

- Categories are monads in spans.
- Functors are colax monad morphisms whose underlying span is a function.
- Natural transformations are 2-cells between these in the free cocompletion under Kleisli objects.

- Categories are monads in spans.
- Functors are colax monad morphisms whose underlying span is a function.
- Natural transformations are 2-cells between these in the free cocompletion under Kleisli objects.
- Functions and spans form a proarrow equipment.
- So do functors and profunctors.
- Strict proarrow equipments are special ${\mathscr F}$ -enriched categories.

- Categories are monads in spans.
- Functors are colax monad morphisms whose underlying span is a function.
- Natural transformations are 2-cells between these in the free cocompletion under Kleisli objects.
- Functions and spans form a proarrow equipment.
- So do functors and profunctors.
- Strict proarrow equipments are special *F*-enriched categories.
- Profunctors are modules in spans.
- Modules exist in any bicategory with local coequalizers.
- $\mathcal{M}od_1$ is idempotent on bicategories with local coequalizers, and its image is those with Kleisli objects.

Theorem (Garner-S.)

There is a monoidal bicategory \mathscr{F}_1 such that

1 \mathscr{F}_1 -enriched bicategories

are the same as

- 2 data consisting of
 - bicategories ${\mathcal K}$ and ${\mathcal M}$ with the same objects, and
 - an identity-on-objects and locally fully faithful pseudofunctor $\mathcal{K}\to\mathcal{M},$ such that
 - *M* has local coequalizers.

Theorem (Garner-S.)

There is a monoidal bicategory \mathscr{F}_1 such that

1 \mathscr{F}_1 -enriched bicategories

are the same as

- 2 data consisting of
 - bicategories ${\mathcal K}$ and ${\mathcal M}$ with the same objects, and
 - an identity-on-objects and locally fully faithful pseudofunctor $\mathcal{K}\to\mathcal{M},$ such that
 - *M* has local coequalizers.

Theorem (Garner-S.)

The \mathscr{F}_1 -bicategory ($Cat \rightarrow \mathcal{P}rof$) is the free cocompletion of the \mathscr{F}_1 -bicategory (Set $\rightarrow Span$) under a type of \mathscr{F}_1 -enriched colimit called tight Kleisli objects.

Theorem (Garner-S.)

There is a monoidal bicategory \mathscr{C}_1 such that

1 C₁-enriched bicategories

are the same as

2 bicategories with local coequalizers.

Theorem (Garner-S.)

The C_1 -bicategory \mathcal{P} rof is the free cocompletion of the C_1 -bicategory \mathcal{S} pan under C_1 -enriched Kleisli objects.

Theorem (Garner-S.)

There is a monoidal bicategory \mathscr{C}_1 such that

1 C₁-enriched bicategories

are the same as

2 bicategories with local coequalizers.

Theorem (Garner-S.)

The C_1 -bicategory $\mathcal{M}od_1(\mathcal{B})$ is the free cocompletion of a C_1 -bicategory \mathcal{B} under C_1 -enriched Kleisli objects.

Theorem (Garner-S.)

There is a monoidal bicategory \mathscr{C}_1 such that

1 C_1 -enriched bicategories

are the same as

2 bicategories with local coequalizers.

Theorem (Garner-S.)

The C_1 -bicategory $Mod_1(B)$ is the free cocompletion of a C_1 -bicategory B under C_1 -enriched Kleisli objects.

Moreover, Kleisli objects are Cauchy \mathscr{C}_1 -colimits. This explains why $\mathcal{M}od_1(\mathcal{M}od_1(\mathcal{B})) \simeq \mathcal{M}od_1(\mathcal{B})$.

Theorem (Garner-S.)

The classical theory of enriched categories, weighted limits, and free cocompletions can all be categorified into a theory of bicategories enriched over a monoidal bicategory.

Theorem (Garner-S.)

The classical theory of enriched categories, weighted limits, and free cocompletions can all be categorified into a theory of bicategories enriched over a monoidal bicategory.

Proof.

40 pages. Thanks Richard!!

 $\mathscr{C}_1 =$ the 2-category of categories with coequalizers and coequalizer-preserving functors.

Theorem

 \mathscr{C}_1 has a (bicategorical) monoidal structure such that functors $A \otimes B \rightarrow C$ are equivalent to functors $A \times B \rightarrow C$ preserving coequalizers in each variable.

 $\mathscr{C}_1 =$ the 2-category of categories with coequalizers and coequalizer-preserving functors.

Theorem

 \mathscr{C}_1 has a (bicategorical) monoidal structure such that functors $A \otimes B \rightarrow C$ are equivalent to functors $A \times B \rightarrow C$ preserving coequalizers in each variable.

Theorem

In \mathcal{C}_1 , Eilenberg-Moore objects (which are constructed as in Cat) are also Kleisli objects.

 $\mathscr{C}_1 =$ the 2-category of categories with coequalizers and coequalizer-preserving functors.

Theorem

 \mathscr{C}_1 has a (bicategorical) monoidal structure such that functors $A \otimes B \rightarrow C$ are equivalent to functors $A \times B \rightarrow C$ preserving coequalizers in each variable.

Theorem

In \mathcal{C}_1 , Eilenberg-Moore objects (which are constructed as in Cat) are also Kleisli objects.

Note: \mathscr{C}_1 itself is a bicategory with local coequalizers!

 \mathscr{F}_1 = the 2-category of fully faithful functors $A_{\tau} \hookrightarrow A_{\lambda}$, where A_{λ} has coequalizers.

Theorem

 \mathscr{F}_1 has a (bicategorical) monoidal structure where $A\otimes B$ is the fully-faithful factorization of

$$A_{\tau} \times B_{\tau} \longrightarrow A_{\lambda} \otimes B_{\lambda}.$$

Let (A, t) be a monad in an \mathscr{F}_1 -bicategory \mathcal{B} .

Definition

A tight Kleisli object of (A, t) consists of

- **1** A Kleisli object A_t of (A, t) in the bicategory \mathcal{B}_{λ} .
- **2** The left adjoint $f : A \to A_t$ is tight.
- **3** A morphism $A_t \rightarrow B$ is tight iff its composite with f is tight.

Let (A, t) be a monad in an \mathscr{F}_1 -bicategory \mathcal{B} .

Definition

A tight Kleisli object of (A, t) consists of

- **1** A Kleisli object A_t of (A, t) in the bicategory \mathcal{B}_{λ} .
- **2** The left adjoint $f : A \to A_t$ is tight.
- **3** A morphism $A_t \rightarrow B$ is tight iff its composite with f is tight.

All \mathscr{F}_1 -weighted colimits look like this: colimits in \mathcal{B}_{λ} such that a certain group of coprojections are tight and "detect tightness".

1 The problem

- **2** Progress and hints
- **3** The solution

Bicategory-enriched categories

- A monoidal category $\mathcal{V} \rightsquigarrow$ a one-object bicategory $\mathbf{B}\mathcal{V}$.
- Monads in $\mathbf{B}\mathcal{V} = \text{monoids in } \mathcal{V}$.

Definition (Bénabou)

A bicategory-enriched category (or polyad) is the thing such that when you do it in $B\mathcal{V}$, it gives you \mathcal{V} -enriched categories.

Bicategory-enriched categories

- A monoidal category $\mathcal{V} \rightsquigarrow$ a one-object bicategory $\mathbf{B}\mathcal{V}$.
- Monads in $\mathbf{B}\mathcal{V} = \text{monoids in } \mathcal{V}$.

Definition (Bénabou)

A bicategory-enriched category (or polyad) is the thing such that when you do it in $\mathbf{B}\mathcal{V}$, it gives you \mathcal{V} -enriched categories.

- If B is locally cocomplete, have a bicategory Mod_∞(B) of these and modules/profunctors.
- It is the free cocompletion of B under C_∞-enriched collages,
 i.e. lax colimits.
- Also have \mathscr{F}_{∞} ...

 $\mathcal{M}od(\mathcal{B})$ is not the Cauchy completion of \mathcal{B} as a \mathscr{C} -bicategory (e.g. its idempotents don't split).

Question

Can we characterize the class of colimits that it does have?

Question

What is the full *C*-enriched Cauchy completion?