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Monads

Definition (Bénabou, 1967)

A monad in a bicategory consists of

• An object A,

• A morphism t : A→ A,

• 2-cells m : tt → t and i : 1A → t, and

• Associativity and unitality axioms.

• Equivalently, a lax functor out of 1.

• Includes ordinary monads, enriched ones, internal ones,
indexed ones, monoidal ones, . . .

• The “Eilenberg-Moore object” At is a lax limit, and the
“Kleisli object” At is a lax colimit (Street).



Categories

Example

A monad in the bicategory of spans (of sets) consists of

• A set A0,

• A span A0 ← A1 → A0,

• Functions m : A1 ×A0 A1 → A1 and i : A0 → A1, and

• Associativity and unitality axioms.

In other words, it’s nothing but a (small) category!

• In similar bicategories, we obtain internal categories, enriched
categories, . . .



Morphisms of monads

Definition (Street, 1972)

A lax monad morphism (A, t)→ (B, s) consists of

• A morphism f : A→ B,

• A 2-cell f : sf → ft, and

• Some axioms.

• = a lax natural transformation between lax functors.

• Induces a morphism At → Bs between E-M objects.

• Colax monad morphisms = colax natural transformations, and
induce morphisms At → Bs between Kleisli objects.
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Morphisms of categories?

Example

A lax monad morphism in the bicategory of spans consists of

• A span A0 ← F0 → B0,

• A morphism

A0 A1 A0

B0 B1 B0

F0 F0

•

•

functor =
colax monad morphism such that the span
A0 ← F0 → B0 is a mere function A0 → B0.
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2-cells of monads

Definition (Street,1972)

For lax f , g , a monad 2-cell (A, t)
f

++

g
33

�� ��
�� (B, s) consists of

• A 2-cell f → g

• Satisfying some axioms.

• = a modification between lax natural transformations.

• Induces a 2-cell At
((

66

�� ��
�� Bs between E-M objects.

• If f , g are colax, monad 2-cells = modifications between colax
transformations, and induce 2-cells between Kleisli objects.



2-cells of categories?

Example

For categories A, B and colax monad morphisms f , g : A→ B,

a monad 2-cell A

f
%%

g
99

�� ��
�� B consists of

• A morphism

A0

F0G0

B0

• Satisfying some axioms.

i.e. just an equality f = g !
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Profunctors

Definition (Bénabou, 1967?)

For categories A,B, a profunctor A −7−→ B consists of

• A functor H : Bop × A→ Set



Profunctors

Definition (Bénabou, 1967?)

For categories A,B, a profunctor A −7−→ B consists of

• Sets H(b, a) for a ∈ A0, b ∈ B0

• Actions

H(b, a)× A(a, a′)→ H(b, a′) and

B(b′, b)× H(b, a)→ H(b′, a)

• Associativity and unitality axioms.



Profunctors

Definition (Bénabou, 1967?)

For categories A,B, a profunctor A −7−→ B consists of

• Spans A0 ← H → B0

• Actions

H ×A0 A1 → H and

B1 ×B0 H → H

• Associativity and unitality axioms.



Modules

Definition (Bénabou, 1973)

For monads (A, t), (B, s) in a bicategory, a module A −7−→ B is

• A morphism h : A→ B

• Actions

ht → h and

sh→ h

• Associativity and unitality axioms.

• Modules in spans = profunctors

• Also get enriched profunctors, internal profunctors, . . .



Composing profunctors

Definition

The composite of profunctors H : A −7−→ B and K : B −7−→ C is

(KH)(c , a) =

∫ b∈B
K (c , b)× H(b, a)

= coeq
(∑

b,b′∈B0
K(c,b′)×B(b′,b)×H(b,a)⇒

∑
b∈B0

K(c,b)×H(b,a)
)

= coeq (K ×B0 B1 ×B0 H ⇒ K ×B0 H)
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Composing modules

Definition

A bicategory B has local coequalizers if all hom-categories have
coequalizers and composition preserves them in each variable.

Definition

In this case, the composite of modules h : (A, t)→ (B, s) and
k : (B, s)→ (C , r) is

coeq(ksh⇒ kh)

We have a bicategory Mod1(B) whose

• objects are monads in B, and

• morphisms are modules



What are these modules?

Theorem (Street 1981, Carboni-Kasangian-Walters 1987)

1 Mod1(Mod1(B)) 'Mod1(B).

2 C is of the form Mod1(B) iff it has
• Local coequalizers, and
• Kleisli objects for monads.

Example

In Prof =Mod1(Span), a monad on a category A is

• A category A′ with the same objects as A, and

• An identity-on-objects functor A→ A′.

Its Kleisli object is just A′.
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Functors vs Profunctors

Definition (Wood 1982)

A proarrow equipment consists of

• Two bicategories K and M with the same objects,

• An identity-on-objects and locally fully faithful pseudofunctor
(−)• : K →M,

• Such that every morphism f• has a right adjoint in M.

Examples

• K = Cat, M = Prof , and for a functor f : A→ B,

f•(b, a) = B(b, f (a))

• K = Set, M = Span, and for a function f : A→ B,

f• = A A B
f
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Those pesky 2-cells

Theorem (Lack-Street 2002)

In the free cocompletion of K under Kleisli objects,

• The objects are monads in K,

• The morphisms are colax monad morphisms in K,

• The 2-cells (A, t)
f

++

g
33

�� ��
�� (B, s) are

• 2-cells f → sg in K,
• Satisfying axioms.



2-cells of categories

Example

For categories A, B and colax monad morphisms f , g : A→ B:

A0

F0G0

B0 B0B1

•

A natural transformation!
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2-cells of categories

Example
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2-cells of categories

Example

For categories A, B and functors f , g : A→ B:

A0

B0 B0B1

g0 f0

A natural transformation!



F -categories

Observation (Lack-S. 2012)

There is a cartesian closed 2-category F such that

1 F -enriched categories

are the same as

2 data consisting of
• 2-categories K and M with the same objects, and
• an identity-on-objects and locally fully faithful 2-functor
K →M.

The objects of F are fully faithful functors Aτ ↪→ Aλ.
An F -category B has homs

B(x , y) =
(
Bτ (x , y) ↪→ Bλ(x , y)

)
.

We call the objects of Bτ (x , y) tight morphisms, and those of
Bλ(x , y) loose.
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The story so far

• Categories are monads in spans.

• Functors are colax monad morphisms whose underlying span is
a function.

• Natural transformations are 2-cells between these in the free
cocompletion under Kleisli objects.

• Functions and spans form a proarrow equipment.

• So do functors and profunctors.

• Strict proarrow equipments are special F -enriched categories.

• Profunctors are modules in spans.

• Modules exist in any bicategory with local coequalizers.

• Mod1 is idempotent on bicategories with local coequalizers,
and its image is those with Kleisli objects.
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The solution, part 1

Theorem (Garner-S.)

There is a monoidal bicategory F1 such that

1 F1-enriched bicategories

are the same as

2 data consisting of
• bicategories K and M with the same objects, and
• an identity-on-objects and locally fully faithful pseudofunctor
K →M, such that

• M has local coequalizers.

Theorem (Garner-S.)

The F1-bicategory (Cat → Prof ) is the free cocompletion of the
F1-bicategory (Set→ Span) under a type of F1-enriched colimit
called tight Kleisli objects.



The solution, part 1

Theorem (Garner-S.)

There is a monoidal bicategory F1 such that

1 F1-enriched bicategories

are the same as

2 data consisting of
• bicategories K and M with the same objects, and
• an identity-on-objects and locally fully faithful pseudofunctor
K →M, such that

• M has local coequalizers.

Theorem (Garner-S.)

The F1-bicategory (Cat → Prof ) is the free cocompletion of the
F1-bicategory (Set→ Span) under a type of F1-enriched colimit
called tight Kleisli objects.



The solution, part 0

Theorem (Garner-S.)

There is a monoidal bicategory C1 such that

1 C1-enriched bicategories

are the same as

2 bicategories with local coequalizers.

Theorem (Garner-S.)

The C1-bicategory Prof is the free cocompletion of the
C1-bicategory Span under C1-enriched Kleisli objects.

Moreover, Kleisli objects are Cauchy C1-colimits. This explains
why Mod1(Mod1(B)) 'Mod1(B).
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The first ingredient: enriched bicategories

Theorem (Garner-S.)

The classical theory of enriched categories, weighted limits, and
free cocompletions can all be categorified into a theory of
bicategories enriched over a monoidal bicategory.

Proof.

40 pages. Thanks Richard!!



The first ingredient: enriched bicategories

Theorem (Garner-S.)

The classical theory of enriched categories, weighted limits, and
free cocompletions can all be categorified into a theory of
bicategories enriched over a monoidal bicategory.

Proof.

40 pages. Thanks Richard!!



The second ingredient: local coequalizers

Definition

C1 = the 2-category of categories with coequalizers and
coequalizer-preserving functors.

Theorem

C1 has a (bicategorical) monoidal structure such that functors
A⊗ B → C are equivalent to functors A× B → C preserving
coequalizers in each variable.

Theorem

In C1, Eilenberg-Moore objects (which are constructed as in Cat)
are also Kleisli objects.

Note: C1 itself is a bicategory with local coequalizers!
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The third ingredient: tight morphisms

Definition

F1 = the 2-category of fully faithful functors Aτ ↪→ Aλ, where Aλ
has coequalizers.

Theorem

F1 has a (bicategorical) monoidal structure where A⊗ B is the
fully-faithful factorization of

Aτ × Bτ −→ Aλ ⊗ Bλ.



The fourth ingredient: tight colimits

Let (A, t) be a monad in an F1-bicategory B.

Definition

A tight Kleisli object of (A, t) consists of

1 A Kleisli object At of (A, t) in the bicategory Bλ.

2 The left adjoint f : A→ At is tight.

3 A morphism At → B is tight iff its composite with f is tight.

All F1-weighted colimits look like this: colimits in Bλ such that a
certain group of coprojections are tight and “detect tightness”.
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Bicategory-enriched categories

• A monoidal category V  a one-object bicategory BV.

• Monads in BV = monoids in V.

Definition (Bénabou)

A bicategory-enriched category (or polyad) is the thing such that
when you do it in BV, it gives you V-enriched categories.

• If B is locally cocomplete, have a bicategory Mod∞(B) of
these and modules/profunctors.

• It is the free cocompletion of B under C∞-enriched collages,
i.e. lax colimits.

• Also have F∞. . .
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A couple of open problems

Mod(B) is not the Cauchy completion of B as a C -bicategory
(e.g. its idempotents don’t split).

Question

Can we characterize the class of colimits that it does have?

Question

What is the full C -enriched Cauchy completion?
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