
Higher Observational Type Theory
An autonomous foundation for univalent mathematics

Michael Shulman
University of San Diego

j.w.w. Thorsten Altenkirch and Ambrus Kaposi

September 23, 2022
OCIE seminar in History and Philosophy of Logic and Mathematics

Chapman University



Outline

1 Introduction

2 Dependent type theory

3 Identifications

4 Univalence



Univalent foundations

Homotopy type theory and univalent foundations (HoTT/UF) is a
new approach to the foundations of mathematics.

• Originated 10–15 years ago (Awodey, Voevodsky, and others).

• Its basic objects are homotopy types, a.k.a. ∞-groupoids,
rather than sets.

Advantages include:

• Isomorphism-invariant (i.e. representation-independent).

• Well-adapted to computer formalization.

• Has a plethora of useful nonstandard models (higher topoi).

• Supports an entirely new subject (synthetic homotopy theory).



Isomorphism invariance

A basic principle of group theory

If G ∼= H are isomorphic groups, and G has some property
(cyclic, abelian, solvable, simple, . . . ), then so does H.

A counterexample to this principle

Z ∼= 2Z as groups, but 1 ∈ Z and 1 /∈ 2Z.

Idea of univalent mathematics

Instead of sets, we build structures out of (homotopy) types.

• No absolute membership; an element has only one type.
• In addition to elements, a type has identifications.

• In familiar types like N,Z,R, identifications are just equalities.
• In the type Group of groups, identifications are isomorphisms.

• Absolutely anything can be transported across an identification.



Formal systems for univalent mathematics

This general idea can be formalized in multiple ways.

• “Book” Homotopy Type Theory (after the eponymous 2013 book)

• Cubical Type Theories (CCHM 2015, ABCFHL 2021, . . . )

• Higher Observational Type Theory (HOTT)
(work in progress by Altenkirch-Kaposi-Shulman, 2022)

Each has advantages and disadvantages. We claim an advantage for
HOTT that it is easier to understand and justify from first principles.

Today’s Goal

Explain and justify HOTT from basic principles, without
presupposing either set theory or homotopy theory.



Outline

1 Introduction

2 Dependent type theory

3 Identifications

4 Univalence



Constructions and proofs

Observing mathematical practice, we see two activities interspersed:
1 Definitions, a.k.a. constructions. For example:

• p is “prime” if its only factors are 1 and p.
• Voevodsky’s construction of the derived category of motives.

2 Proofs. For example:
• Euclid’s proof of the infinitude of primes.
• Voevodsky’s proof of the Milnor conjecture using motives.

However, the boundary is not always clearly drawn:
• A construction can depend on a proof: defining exp(x) =

∑∞
n=0

1
n!x

n

requires a proof that this series converges.
• A proof may involve intermediate constructions: M = p1p2 · · · pn + 1

in the infinitude of primes.
• A theorem may claim some object exists, but later we may use the

specific object constructed in the proof.

Propositions-as-types, proofs-as-terms, Curry–Howard, Martin-Löf

In dependent type theory (including HOTT), we unify proofs with
constructions. That is, a proof is a particular construction.



Constructions have types

When a proof is called for, it can’t be just any proof: it has to be a
proof of the desired theorem. Similarly, when a definition of a real
number is called for, I can’t construct a complex number instead.

Zeroth principle of HOTT (or any dependent type theory)

Each construction/proof has a type. Doing mathematics consists of

1 Specifying a type, and then

2 Giving a construction belonging to it (called a term).

When a term t has type A, we write t : A.

Some types are like sets: N, R, C. We call their terms elements.

Other types are like theorems: “There are infinitely many primes”,
“¬∃xyzn. n > 2 ∧ xn + yn = zn”. We call their terms proofs.



Types of hypotheticals

Propositions-as-types unifies all kinds of hypothetical construction:

1 Function definitions, f (x) = x2 (x2 hypothetical on x)

2 Proofs of P ⇒ Q (proving Q hypothetical on truth of P)

3 Proofs of ∀x .P(x) (proving P(x) hypothetical on x)

The type of hypothetical constructions is called a Π-type. Its terms
are λ-abstractions.

(λx .t[x ]) :
∏
x :A

B[x ].

Here t[x ] constructs an element of B[x ], hypothetical on x : A.

If B is constant, we write
∏

x :A B as A→ B.



Types of tuples

Propositions-as-types also unifies all kinds of tuples:

1 Ordered tuples (2, 4, 7) in geometric n-space

2 Bundling sets with structure, e.g. a group (G ,m, e, i).

3 Proofs of P ∧ Q (proof of P tupled with proof of Q)

4 Proofs∗ of ∃x .P(x) (an element c tupled with a proof of P(c))

The type of pairs is called a Σ-type:

(a, b) :
∑
x :A

B[x ]

Here a : A and b : B[a]. If B is constant, write
∑

x :A B as A× B.

Higher-ary tuples belong to iterated Σ-types:

(a, b, c)
def
= (a, (b, c)) :

∑
x :A

∑
y :B[x] C [x , y ].



Types of types

“Specifying a type” is itself a mathematical activity, i.e. a
construction. Thus, types are also terms; their type is a universe U .

(“U : U ” would have the same problems as a set of all sets, so we
actually have a hierarchy of universes U0 : U1 : U2 : · · · .)

(There are many other kinds of types — quotients, disjoint unions, the
natural numbers, well-founded trees — but these are enough for now.)



Outline

1 Introduction

2 Dependent type theory

3 Identifications

4 Univalence



Equality

One of the most important kinds of proof in mathematics is a proof
of equality. Since proofs have types, we need a type of equalities.

First principle of HOTT

For any type A and terms a, b : A, there is an identity type

a =A b : U .

Its terms are called identifications of a with b.

For specific types A, we define the meaning of a =A b appropriately
for terms of that type (examples momentarily).



Reflexivity

The most fundamental property of equality is that everything is
equal to itself.

Second principle of HOTT

For any term a : A, there is a specified reflexivity term

refla : a =A a.

For specific terms a, we define the meaning of refla appropriately
(examples momentarily).

We also expect equality to be symmetric, transitive, substitutive, etc.
These will be deduced later.



Identifications of tuples

Example

An identification of tuples is a tuple of identifications:(
(a0, b0) =A×B (a1, b1)

)
def
=
(

(a0 =A a1)× (b0 =B b1)
)

refl(a,b)
def
= (refla, reflb)

In other words, two ordered pairs are equal just when their
components are equal pairwise.

(We postpone the general case with B nonconstant.)



Identifications of functions

Example

You might expect equality of functions to be pointwise:

¿ (f =A→B g)
def
=
∏

x :A

(
f (x) =B g(x)

)
?

However, we actually make it more general: two functions are equal
if they map equal points to equal points.

(f =A→B g)
def
=
∏

x :A

∏
y :A

(
(x =A y)→

(
f (x) =B g(y)

))
This way we kill two birds with one stone:

• It includes pointwise equality: apply to x , x , and reflx .

• Reflexivity proves that functions respect equality:

reflf :
∏

x :A

∏
y :A

(
(x =A y)→

(
f (x) =B f (y)

))
.



Homotopy types

Since a =A b is itself a type, it has its own identifications.
Thus, a general type A consists of:

• Terms, a : A.

• Identifications, p : a =A b.

• Identifications of identifications, r : p =(a=Ab) q.

• And so on. . .

Often, only a small amount of this structure matters.

• In N, Z, R, etc., each a =A b has at most one term, and higher
identity types are trivial. These are called 0-types.

• In types whose elements are structures, such as Group, Vect,
Mfd, each a =A b is a 0-type. These are called 1-types.

• The type of 1-types is a 2-type, etc.

• The fundamental homotopy type of a topological space (points,
paths, homotopies, etc.) need not be an n-type for any n <∞.



The rest of a homotopy type

Based on our intuition and experience of equality and isomorphism,
we expect to have properties like:

• Each identity type is reflexive, symmetric, and transitive.

∗ : (x =A y)× (y =A z)→ (x =A z).

For higher types these are operations containing data: composition
of isomorphisms, concatenation of paths, etc., e.g.

◦ : (G ∼= H)× (H ∼= K )→ (G ∼= K )

• These operations must satisfy axioms, like associativity.

p ∗ (q ∗ r) =(x=Aw) (p ∗ q) ∗ r .

• For higher types, these axioms are themselves operations, and
must satisfy their own axioms; etc.. . .



(Un)defining homotopy types

There exist definitions of “homotopy type” in terms of sets that
explicitly specify all this complicated structure.

In HOTT, types are undefined objects, like “sets” in ZFC.
We then have a few simple rules (a.k.a. principles, axioms) that

1 Are intuitively justifiable.

2 Generate all this complexity emergently.
(Compare the emergent complexity of the von Neumann hierarchy.)

3 Allow us to construct all the desired examples.

Specifically:

• The first principle, “All types have identity types”,
automatically generates infinite towers of identifications.

• The remaining principles similarly generate the operations.



Outline

1 Introduction

2 Dependent type theory

3 Identifications

4 Univalence



Observational univalence

Question

Recall that types are terms in a universe U . What is A =U B?

You might expect to see

¿ (A =U B)
def
= · · · ?

the way we did for Σ-types and Π-types.

But recall, we avoid complex explicit definitions of types, instead
giving rules for how types behave and how to construct them.

Similarly, we avoid an explicit definition of identifications of types,
instead giving rules for how they behave and how to construct them.



Identifications of types

How should an identification of types behave?

• In general, nontrivial identifications connect distinct
representations of, or names for, the same object.
• 3 · 3 and 23 + 1 are both representations of 9, so

3 · 3 =N 23 + 1.

• “The morning star” and “the evening star” are both
names for Venus, so

The morning star =Planet The evening star.

• Thus, an identification in U should connect two
representations of the same type.



Example: rational numbers

• Qf
def
= integer fractions 1

2 , −4
3 , 3

7 , . . .

• Qd
def
= finite or repeating decimals 0.5, −1.3, 0.428571,. . .

These are two representations of the rational numbers, so we should
have an identification

e : Qf =U Qd

This identification is determined by which elements of Qf and Qd

correspond to each other:

1
2 ∼ 0.5 − 4

3 ∼ −1.3 3
7 ∼ 0.428571

Definition

A correspondence between A and B is a function R : A× B → U .
(We can think of R(a, b) as theorem-like, e.g. a ∼ b above.)



Bitotal correspondences

Not every correspondence is an identification of types. We need to
know, at least, that (e.g.) every fraction has some repeating decimal,
and every repeating decimal can be written as some fraction.

Definition

A correspondence R : A× B → U is bitotal if

• For every a : A, there is a b : B and an r : R(a, b); and

• For every b : B, there is an a : A and an s : R(a, b).

In symbols, we must have a term of

isBitotal(R)
def
=
(∏

a:A

∑
b:B R(a, b)

)
×
(∏

b:B

∑
a:A R(a, b)

)
.



Identifications of types

Third principle of HOTT

Every identification of types e : A =U B is equipped with a bitotal
correspondence

JeK : A× B → U .

Of course, any type A : U has a reflexivity identification

reflA : A =U A.

There is an obvious choice for its underlying correspondence:

Fourth principle of HOTT

For A : U , the correspondence of reflA is its identity types:

JreflAK(a, b)
def
= (a =A b).



Substitution

This seems like very little, but it’s almost all we need!
First, note for B : A→ U we have

reflB :
∏

a0:A

∏
a1:A

(
(a0 =A a1)→ (B(a0) =U B(a1))

)
.

Theorem

Identifications are substitutive: given B : A→ U , with b0 : B(a0)
and a2 : a0 =A a1, we have a term in B(a1).

Proof.

Since reflB(a0, a1, a2) : B(a0) =U B(a1), there is a bitotal
correspondence JreflB(a0, a1, a2)K between B(a0) and B(a1). Thus,
any b0 : B(a0) corresponds to some term of B(a1).



Dependent identifications

Definition

For b0 : B(a0) and b1 : B(a1), terms of JreflB(a0, a1, a2)K(b0, b1)
are dependent identifications of b0 with b1 “along” a2:(

b0 =
a2
B b1

) def
= JreflB(a0, a1, a2)K(b0, b1).

We use these to define identity types of general Σ- and Π-types:(
(a0, b0) =∑

x :A B(x) (a1, b1)
)

def
=
∑

a2:a0=Aa1

(
b0 =

a2
B b1

)
(
f =∏

x :A B(x) g
)

def
=
∏

a0:A

∏
a1:A

∏
a2:a0=Aa1

(
f (a0) =

a2
B g(a1)

)
.



Specialized dependent identifications

The definitions of refl by term imply that

• reflf (a, a, refla)
def
= reflf (a).

• reflλx .b(a0, a1, a2)
def
= reflb for b independent of x .

• reflλx .x(a0, a1, a2)
def
= a2.

Combined with the fourth principle, we get:

• (b0 =refla
B b1)

def
= (b0 =B(a) b1).

• (b0 =
a2
λx.B b1)

def
= (b0 =B b1) for B : U a constant type.

• (b0 =e
λX .X b1)

def
= JeK(b0, b1) for e : B0 =U B1.

In particular, the identity types of
∑

x :A B(x) and
∏

x :A B(x)
specialize to those of A× B and A→ B.



Transitivity and symmetry

Theorem

Identification is transitive and symmetric.

Proof.

Consider the family of identity types:

IdA : A× A→ U

IdA(x , y)
def
= (x =A y).

Substitution in IdA along (r0, r1) : (a0, a1) =A×A (b0, b1) says that
any s : a0 =A a1 yields a term of b0 =A b1.

• Taking b0
def
= a0 and r0

def
= refla0 yields transitivity.

• Taking a1
def
= b1

def
= a0 and r1

def
= s

def
= refla0 yields symmetry.

We get all the higher structure of a homotopy type in a similar way.



Identifying identity types

More generally, consider Id :
(∑

X :U (X × X )
)
→ U defined by

Id(X , x , y)
def
= (x =X y).

For (A, a0, a1) and (B, b0, b1) in
∑

X :U (X × X ), we have(
(A, a0, a1) =∑

X :U (X×X ) (B, b0, b1)
)

def
=∑

e:A=U B

(
JeK(a0, b0)× JeK(a1, b1)

)
.

Thus if we have r0 : JeK(a0, b0) and r1 : JeK(a1, b1), for some
identification of types e : A =U B, then we obtain

reflId((A, a0, a1), (B, b0, b1), (e, r0, r1)) : (a0 =A a1) =U (b0 =B b1).



One-to-one correspondences

In particular, given r0 : JeK(a0, b0) and r1 : JeK(a1, b1), we have
a0 =A a1 if and only if b0 =B b1. This is essentially the standard
notion of one-to-one correspondence.

Example

• We have 1
2 ∼ 0.5 and 1

2 ∼ 0.49, so refl 1
2

yields 0.5 =Qd
0.49.

• We have 1
3 ∼ 0.3 and 3

9 ∼ 0.3, so refl0.3 yields 1
3 =Qf

3
9 .

If A and B are 0-types, like Qf and Qd, nothing else is needed.
But for general types, we need to know the whole identification

(a0 =A a1) =U (b0 =B b1).



From bijections to identifications

• Just as Principles 0, 1, and 2 tell us how types behave,
Principles 3 and 4 tell us how identifications of types behave.

• Just as Π, Σ, etc. construct particular types, we can construct
particular identifications of types:

Theorem

Given f : A→ B and g : B → A such that g ◦ f =A→A idA and
f ◦ g =B→B idB (a bijection), we have 〈f 〉 : A =U B.

Proof.

Define J〈f 〉K(a, b)
def
= (f (a) =B b). This is bitotal because:

• Given a : A, we have f (a) : B and reflf (a) : f (a) =B b.

• Given b : B, we have g(b) : A and f (g(b)) =B b.

The rest of the data is similar.

An identification of types “records” much more structure than a
bijection, but in practice we usually generate it from one.



Conclusion

Theorem

These basic principles, plus the omitted details, imply that every
type has all the expected operations and axioms at all levels.

Thus, although it takes a bit of work, our basic principles generate a
complete theory of homotopy types, without presupposing either set
theory or homotopy theory.

The resulting system can serve as an isomorphism-invariant
foundation for mathematics.


	Introduction
	Dependent type theory
	Identifications
	Univalence

