Conservativity of Duals

Michael Shulman

(University of San Diego)

MIT Categories Seminar The Internet May 14, 2020

- Conservativity
- Duals
- Conservativity via gluing
- Yoneda embeddings for duals
- Double gluing

- Conservativity
- Duals
- Conservativity via gluing
- Yoneda embeddings for duals
- Double gluing

Inclusions of algebraic doctrines

8

Let
$$D_1$$
, D_2 be algebraic doctrines = algebraic structures on categories
= algebraic 2-theories.
such that $D_1 \subseteq D_2$, i.e. D_2 -structure includes D_1 -structure.

2-Conservativity of Doctrine extensions

2-Conservativity of Doctrine extensions

D₂ is 2-conservative over D, if each
$$G \rightarrow UFG$$
 is fully faithful.
One motivation: This implies we can use formal calculi for D₂-categories
(type theories, string diagrams) to reason about D₁-categories.
• $G \rightarrow UE$ faithful \Rightarrow If the D₂-calculus proves two morphisms are
equal, they are equal in any D₁-category.
• $G \rightarrow UE$ fully faithful \Rightarrow If the D₂-calculus defines a morphism,
tor some E it defines an actual morphism in a D₁-category.
• $G \rightarrow UEE$ fully faithful \Rightarrow That morphism $?$ is uniquely determined
(doesn't depend on the choice of E).

- Conservativity
- Duals
- Conservativity via gluing
- Yoneda embeddings for duals
- Double gluing

What are duals for?

One answer: parallelism.

$$A^*$$
 is the type of "channels" or "continuations" accepting an A.
 A^* is the type of "channels" or "continuations" accepting an A.
 A^* creates a channel accepting A and starts a thread
listening to use whatever is passed to that channel.
 A^* A passes a value of type A to a channel.

Non-conservativity of duals

The simplest notion of dual involves
$$I \longrightarrow A \otimes A^*$$
 and $A^* \otimes A \rightarrow I$.
A symmetric monoidal category with all such duals is compact closed.
These are NOT 2-conservative over (closed) symmetric monoidal categories,
because they have traces (a.k.a. deadlocks):
(But compact closed categories
are 2-conservative over
 $A \otimes A^*$
 $A^* A \otimes A^*$
 $A^* \otimes A$
 $A^* \otimes A^*$
 $A^* \otimes$

Review of multicategories

A (symmetric) multicategory consists of

- · A set of objects
- · Hom-sets b(A1,..., An; B) for all n≥0 and objects A1,..., An, B
- · Permutation actions 6(A1, ..., An; B) => 6(A01, ..., Aon; B)

· Composition

· Associativity + unit + equivariance axioms.

Representability of multicategories and polycategories

Internal-homs in *-autonomous categories

A *-autonomous category is closed, with
$$[B,C] = (B \otimes C^*)^*$$
:
 $\mathcal{E}(A, [B,C]^*) = \mathcal{E}(A, B \otimes C^*) \cong \mathcal{E}(A, B, C^*) \cong \mathcal{E}(A \otimes B, C^*)$

The duality morphisms are
$$A^* \otimes A \to I^*$$
 and $I \to (A^* \otimes A)^*$.
The extra dualization means no trace is induced!

Are *-autonomous categories 2-conservative over closed sym. mon. cats?

- Conservativity
- Duals
- Conservativity via gluing
- Yoneda embeddings for duals
- Double gluing

Doctrinal Yoneda embeddings

- · L preserves all limits and exponentials
- · If 6 is monoidal, so are P6 and 2 by Day convolution.

If D, contains some colimits d, we can restrict to
$$P_d \mathcal{E} = \text{presheaves}$$

preserving d, to make $\mathcal{L}_d: \mathcal{E} \longrightarrow \mathcal{P}_d \mathcal{E}$ also preserve d.

Gluing with the Yoneda embedding (Lafont)

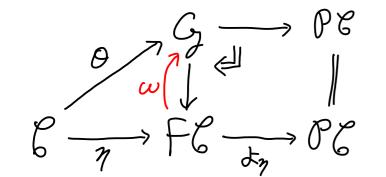
Usually,
$$G$$
 also has D_2 -structure, preserved by the projections $G \rightarrow FG$ and $G \rightarrow PG$. (Abstract nonsense sometimes applies.)

The map to the gluing category

have a functor 0:6-5 We induced by the 2-cell having **)**/ . components $\mathcal{A}b(a) = \mathcal{C}(a,b) \xrightarrow{\eta} \mathcal{F}\mathcal{C}(\eta a, \eta b) = \mathcal{J}_{\eta}(\eta b)(a) = (\mathcal{J}_{\eta} \circ \eta)(b)(a).$ Usually, O is a D-functor (e.g. since n and L are).

The section of the gluing category

From gluing to 2-conservativity



So for
$$h \in FG(\eta a, \eta b)$$
 we have
 $\overline{co}(h) \in G(a, b)$ with $\eta(\overline{co}(h)) = h$.

.

And
$$\omega \circ \eta = 0$$
 implies $\overline{\omega}(\eta(g)) = g$ for $g \in \mathcal{G}(a,b)$.
Thus $\mathcal{G}(a,b) \xrightarrow{\eta}_{\overline{\omega}} \mathcal{F}\mathcal{G}(\eta a, \eta b)$ are inverse isomorphisms,
So $\eta: \mathcal{C} \to \mathcal{F}\mathcal{C}$ is fully faithful, i.e. D_2 is 2-conservative over D_1

Lafont gluing: summary

This technique requires
(1)
$$P_1 \& D_2$$
 lift to comma categories, coherently.
(2) For a D_1 -category \mathcal{E}_1 $\mathcal{P}\mathcal{E}_2$ has D_2 -structure and
 $\mathcal{L}: \mathcal{E} \hookrightarrow \mathcal{P}\mathcal{E}_1$ is a D_1 -functor.

But (2) fails when D2 contains duals - P6 is not *-autonomous.

- Conservativity
- Duals
- Conservativity via gluing
- Yoneda embeddings for duals
- Double gluing

From multicategories to polycategories, I

- ob(LG) = ob(G) → ob(G) → objects A∈G and their formal duals Ā
 The involution is A*=Ā, Ā*=A.
- The only nonempty homsets of LE have exactly one formal dual: $LG(A_{1},...,A_{m},\overline{B}_{n}(c_{n})) = G(A_{1},...,A_{m},C_{1},...,C_{n};B)$

Tensor products in the left adjoint

Even if G is monoidal, LG doesn't have all @s, but it has some: · A&B remains a tensor product in LE. · If G is closed, then [B,C] is a tensor product B&C: $L\mathcal{L}(A_{i}, A_{n}, \overline{[B, C]}) = \mathcal{L}(A_{i}, A_{n}; [B, C])$ $\cong \mathcal{C}(A_{n}, B; C)$ $= LC(A_{i}, ..., A_{h}, B_{\bar{C}})$

Instead of a CSMC &, consider the *-polycat. L& w/ these Øs.

From multicategories to polycategories, II

•
$$ob(RE) = ob(E) \times ob(E) - pairs(A^+, A^-) of objects A^+, A^- \in C$$

• The involution is
$$(A^{\dagger}, A^{-})^{*} = (A^{-}, A^{+}).$$

• $RC(A_{1,...,}A_{n}) = C(A_{2,...,}^{+}A_{n}^{+};A_{n}^{-}) \times ... \times C(A_{1,...,}^{+}A_{n-1}^{+};A_{n}^{-})$ In particular, $RC(A, B^{*}) = C(A^{+}, B^{+}) \times C(B^{-}A^{-})$

The Chu construction

An augmented multicategory has additionally A: An • hom-sets 6(A:,...,An;·) with empty codomain: $\stackrel{\dots}{\oplus}$ • compositions, etc.

Example: For any multicategory
$$\mathcal{E}$$
 and $\mathcal{L} \in \mathcal{E}$, we have an augmented multicategory (6,1) extending \mathcal{E} by (6,1) (A,...,A,:·) = $\mathcal{E}(A_{1},..,A_{n};...)$

The forgetful functor
$$V_+$$
: *Poly \rightarrow AugMulti, $V_+\mathcal{E}(A_{i,...,A_n;\cdot}) = \mathcal{E}(A_{i,...,A_n})$,
also has a right adjoint, called the Chu construction, e.g. Chu(\mathcal{E}_+).

Modules for polycategories (Hyland)

For
$$\mathcal{E}$$
 a *-polycategory, an \mathcal{E} -module consists of
• "hom" sets $\mathcal{M}(A_{1,...,}A_{n})$ with permutation actions
• "composition" actions $\mathcal{M}(A_{1,...},A_{m,C}) \times \mathcal{E}(B_{1,...,}B_{n,C}*) \rightarrow \mathcal{M}(A_{1,...,}A_{m,B_{1,...,}}B_{n}) + axioms$.

Examples: (1)
$$\mathcal{L}_{B}(A_{1},...,A_{n}) = \mathcal{E}(A_{1},...,A_{n},B^{*})$$
 — representable modules
(2) $\mathcal{E}(A_{1},...,A_{n}) = \mathcal{E}(A_{1},...,A_{n})$ — the tautological module

Yoneda embeddings for polycategories (Hyland)

Modules form a multicategory &-Mod with
e.g.
$$f \in \mathcal{E}$$
-Mod $(M, N; Q)$ consisting of maps
 $\mathcal{M}(A_{1,...,}A_m) \times \mathcal{N}(B_{1,...,}B_n) \longrightarrow Q(A_{1,...,}A_m, B_{1,...,}B_n).$
The representables define $\mathcal{L}: V_{\mathcal{L}}(\mathcal{E}) \longrightarrow (\mathcal{E}-Mod, \mathcal{E})$ in AugMulti,
hence $\mathcal{L}: \mathcal{E} \longrightarrow Chu(\mathcal{E}-Mod, \mathcal{E}) = Env(\mathcal{E})$, the envelope of \mathcal{E} .
Theorem (Hyland) $\mathcal{L}: \mathcal{E} \longrightarrow Env(\mathcal{E})$ is fully faithful, and
 $Env(\mathcal{E})$ is \times -autonomous.

Modified envelopes

If
$$\mathcal{E}$$
 has some \otimes s, say \mathcal{A} , let \mathcal{E} -Mode be those modules that
preserve them: $\mathcal{M}(A_{1,...},A_{n},B,C) \cong \mathcal{M}(A_{1,...},A_{n},B\otimes C)$.
and $Env_{\mathcal{A}}(\mathcal{E}) = Chu(\mathcal{E}-Mod_{\mathcal{A}},\mathcal{E})$.
Theorem $\mathcal{L}_{\mathcal{A}}: \mathcal{E} \longrightarrow Env_{\mathcal{A}}(\mathcal{E})$ is fully faithful, preserves the \otimes s in \mathcal{V} ,
and $Env_{\mathcal{A}}(\mathcal{E})$ is \star -autonomous.
(orollary Any CSMC \mathcal{E} embeds fully by a closed monoidal functor
in the \star -autonomous category $Env_{\mathcal{A}}(\mathcal{L}\mathcal{E})$.

- Conservativity
- Duals
- Conservativity via gluing
- Yoneda embeddings for duals
- Double gluing

Lafont gluing for *-autonomous categories

Let
$$\mathcal{E} \xrightarrow{\mathcal{F}} F_{\mathcal{U}} \mathcal{E}$$
 be the free X-autonomous category generated by the
*-polycategory \mathcal{E} (e.g. LC) preserving the \otimes s in Cl. To prove \mathcal{P}
fully faithful, we replace PC by $Env(\mathcal{E})$, with two other changes:

$$\mathcal{E} \xrightarrow{\gamma} \mathcal{E}_{d} \xrightarrow{\varphi} \mathcal{E}$$

The double Chu construction

The double Chu construction, Chu(E,L) is a poly double category,
i.e. an internal category in *Poly, whose:
- horizontal *-polycategory is Chu(E,L)
- vertical category is
$$C \times C$$
 (both covariant!)
- "2-cells" are tuples of commuting squares,
e.g. $A \xrightarrow{f} B$ $A^{\dagger} \xrightarrow{f^{\dagger}} B^{\dagger}$ $A^{-} \xleftarrow{f} B^{-}$
 $h \downarrow \forall \downarrow k$ is $k^{\dagger} \downarrow k^{\dagger}$ and $k^{-} \downarrow \downarrow k^{-}$.
 $C \xrightarrow{g} D$ $C^{\dagger} \xrightarrow{g^{\dagger}} D^{\dagger}$ $C \xleftarrow{g^{-}} D^{-}$

Double gluing (Hyland-Tan-Schalk)

Vistas

(1) *-autonomous cats are also 2-conservative over linearly distributive cats. (Previously proven by Blute-Cockett-seely-Trimble w/ cut climination.)

(3) In fact, X-autonomous cats w/ initial object are NOT conservative over CSMCs w/ initial object! (Schellinx)