Extraordinary multicategories

Michael Shulman

Department of Mathematics University of Chicago

2010 Canadian Mathematical Society Summer Meeting

Michael Shulman (University of Chicago)

Extraordinary multicategories

CMS 2010 1 / 21

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The question

General question

In what type of category does a (blank) naturally live?

- A monoid in a multicategory is an object A with morphisms () ^e→ A and (A, A) ^m→ A satisfying axioms. (A monoid in a monoidal category is a special case.)
- An adjunction in a 2-category consists of morphisms A → B and B → A with 2-morphisms 1_A → gf and fg → 1_B satisfying axioms.

Question A

Where do monoidal categories naturally live?

・ロト ・ 四ト ・ ヨト ・ ヨト

2-multicategories

Definition

A 2-multicategory is a multicategory enriched over Cat.

Thus it has hom-categories $\mathscr{C}(A_1, \ldots, A_n; B)$, with composition functors as in a multicategory. We draw the morphisms in $\mathscr{C}(A_1, \ldots, A_n; B)$ as

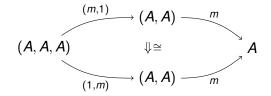
$$(A_1,\ldots,A_n)$$
 \Downarrow B

Any monoidal 2-category (like **Cat**) has an underlying 2-multicategory, with

$$\mathscr{C}(A_1,\ldots,A_n;B) = \mathscr{C}(A_1\otimes\cdots\otimes A_n,B)$$

Pseudomonoids

A pseudomonoid in a 2-multicategory is an object A with morphisms () \xrightarrow{e} A and (A, A) \xrightarrow{m} A and 2-isomorphisms like



satisfying suitable axioms.

A pseudomonoid in Cat is precisely a monoidal category.

< 回 > < 三 > < 三 >

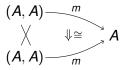
Symmetric pseudomonoids

Question B

Where do braided and symmetric pseudomonoids live?

We need to describe natural transformations with components such as $x \otimes y \rightarrow y \otimes x$, which switch the order of variables.

One answer: In a symmetric club, where a 2-morphism $f \xrightarrow{\alpha} g$ comes with a specified permutation relating the input strings of *f* and *g*. The symmetry is then a 2-isomorphism

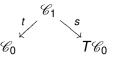


(where the assigned permutation is the transposition in Σ_2).

Clubs

Definition (Kelly, 1972)

A (symmetric) club is a generalized multicategory for the "free symmetric strict monoidal category" monad on spans in **Cat**, whose category of objects is additionally discrete.



- $\mathscr{C}_0 =$ the discrete set of objects.
- $T\mathscr{C}_0$ = category of finite lists of objects, with permutations.

• objects of \mathscr{C}_1 = morphisms in \mathscr{C} .

morphisms of C₁ = 2-morphisms in C. The functor s assigns an underlying permutation to each 2-morphism.

More pseudomonoids

Question C

What about closed, *-autonomous, autonomous, pivotal, ribbon, and compact closed pseudomonoids?

These involve *contravariant* structure functors and *extraordinary natural* transformations. E.g. in a closed monoidal category, we have

• a functor
$$[-, -]$$
: $A^{op} \times A \rightarrow A$, and

transformations

$$[x, y] \otimes x \to y$$

 $y \to [x, y \otimes x]$

natural in y and extraordinary natural in x.

Extraordinary naturality

Definition (Eilenberg-Kelly, 1966)

Given $f: A^{op} \times A \times B \to C$ and $g: B \to C$, an extraordinary natural transformation $f \xrightarrow{\alpha} g$ consists of components $f(a, a, b) \xrightarrow{\alpha_{a,b}} g(b)$ such that

$$\begin{array}{ll} f(a, a, b_1) \longrightarrow f(a, a, b_2) & f(a_2, a_1, b) \longrightarrow f(a_1, a_1, b) \\ & \alpha_{a, b_1} \downarrow & \downarrow^{\alpha_{a, b_2}} & \downarrow & \downarrow^{\alpha_{a_1, b}} \\ & g(b_1) \longrightarrow g(b_2) & f(a_2, a_2, b) \xrightarrow{\alpha_{a_2, b}} g(b) \end{array}$$

commute.

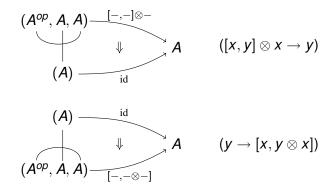
We can generalize to functors of higher arity.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Graphs

Instead of a permutation, an extraordinary natural transformation is labeled by a graph matching up the input categories in pairs.

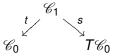
E.g. the transformations for a closed monoidal category are:



< 同 > < 回 > .

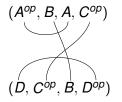
Clubs based on graphs

So we should consider *T*-multicategories



where

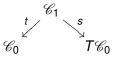
- objects of TC₀ = finite lists of objects of C₀ with assigned variances, e.g. (A^{op}, B, A, C^{op}, D).
- morphisms of $T\mathscr{C}_0$ = graphs labeled by \mathscr{C}_0 , e.g.



BUT.

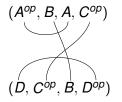
Clubs based on graphs

So we should consider *T*-multicategories



where

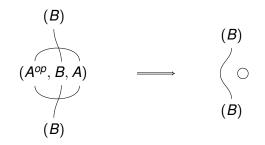
- objects of TC₀ = finite lists of objects of C₀ with assigned variances, e.g. (A^{op}, B, A, C^{op}, D).
- morphisms of $T\mathscr{C}_0$ = graphs labeled by \mathscr{C}_0 , e.g.



BUT...

The problem with loops

If we want to make $T\mathscr{C}_0$ into a category, we end up composing graphs in ways that create "loops."



Theorem (Eilenberg-Kelly)

Extraordinary natural transformations can be composed if and only if the composite of their graphs produces no loops.

Dealing with loops

This is a problem! Ways that we might deal with it:

- Compose graphs by throwing away any loops that appear (Kelly's choice).
 - Pros: We can describe the free club on a closed pseudomonoid, and the monad it generates.
 - Cons: We can't do the same for compact closed pseudomonoids. Also, Cat is not itself a club of this sort.
- Don't let ourselves compose graphs that create loops.
- Generalize the notion of extraordinary natural transformation in a way that can deal with loops.

A (10) A (10)

Extraordinary multicategories

Let **PCat** denote the category of partial categories: directed graphs with a partially defined composition operation, with identities, which is associative insofar as it is defined.

Now we can define a monad T_{eo} on PCat with

- objects of $T_{eo} \mathscr{C} =$ finite lists of objects of \mathscr{C} with variances,
- morphisms of $T_{eo} \mathscr{C} = \text{loop-free graphs labeled by } \mathscr{C}$, with composition defined whenever no loops occur.

Definition

An extraordinary 2-multicategory is a T_{eo} -multicategory where \mathscr{C}_0 is discrete and $\mathscr{C}_1 \xrightarrow{s} T_{eo} \mathscr{C}_0$ reflects composability.

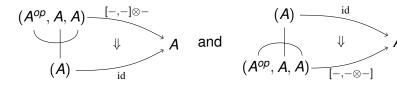
(The last condition implements the Eilenberg-Kelly theorem.)

Back to pseudomonoids

A closed pseudomonoid in an extraordinary 2-multicategory is a pseudomonoid together with a morphism

$$[-,-]\colon (A^{op},A) \to A$$

and extraordinary 2-morphisms



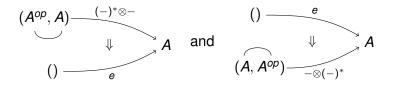
satisfying suitable axioms.

Back to pseudomonoids

A compact closed pseudomonoid in an extraordinary 2-multicategory is a symmetric pseudomonoid together with a morphism

$$(-)^*\colon (A^{op}) o A$$

and extraordinary 2-morphisms



satisfying suitable axioms.

Profunctors

Definition

Let $f: A \to C$ and $g: B \to C$ be functors, and $H: B \to A$ be a profunctor, i.e. a functor $A^{op} \times B \to \mathbf{Set}$. An *H*-natural transformation $f \to g$ is a natural transformation $H(a, b) \to \hom_C(f(a), g(b))$.

- If *A* = *B* and *H* = hom_{*A*}, an *H*-natural transformation is an ordinary natural transformation.
- If $f: D^{op} \times D \times B \rightarrow C$ and $g: B \rightarrow C$, and

 $H((d_1, d_2, b_1), b_2) = \hom_D(d_2, d_1) \times \hom_B(b_1, b_2),$

an *H*-natural transformation is an extraordinary natural transformation of graph " \checkmark ".

But we can *always* compose an *H*-natural transformation with a *K*-natural one to get a $(K \circ H)$ -natural one.

Compact closed double categories

A double category has objects, arrows (drawn horizontally), proarrows (drawn vertically), and square-shaped 2-cells.

It is compact closed if it is symmetric monoidal, and every object A has a dual A^{op} with a unit and counit that are *proarrows*.

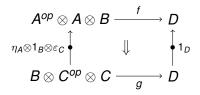
Example

In **Cat**, the arrows are functors and the proarrows are profunctors. The dual of *A* is A^{op} , and the unit and counit are both hom_{*A*}: $A^{op} \times A \rightarrow$ **Set**, regarded either as a profunctor 1 $\rightarrow A \times A^{op}$ or $A^{op} \times A \rightarrow 1$.

Extraordinary naturality, again

In a compact closed double category, any labeled graph can be composed into a proarrow. E.g.:

Thus an extraordinary 2-morphism labeled by such a graph can be defined to mean a square



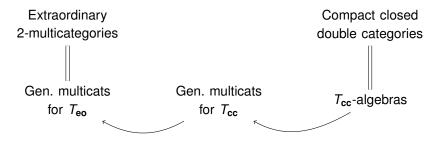
We can again define (compact) closed pseudomonoids and so on.

Michael Shulman (University of Chicago)

Extraordinary multicategories

The connection

The monad T_{cc} on double categories, whose algebras are compact closed double categories, is also essentially built out of graphs (with loops). Thus we (sort of) have a morphism of monads $T_{cc} \rightarrow T_{eo}$, giving rise to forgetful functors:



The composite of these functors is exactly the construction we just described.

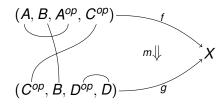
(4) (5) (4) (5)

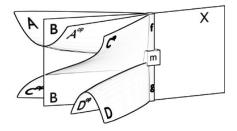
Further References and Remarks

- Double categories of profunctors also tend to have companions and conjoints for arrows, making them into proarrow equipments (Wood, 1982).
- If we discard the arrows and consider only the proarrows, we obtain the functorial calculus of autonomous bicategories (Street, 2003). The double category version exists in unpublished work of Baez and Mellies.
- The graphs labeling extraordinary natural transformations can also be identified with a 2-dimensional shadow of the *surface diagrams* for autonomous bicategories (and double categories). But making that precise is difficult...

A (10) A (10)

Graphs vs. surface diagrams





Michael Shulman (University of Chicago)

< ロ > < 同 > < 回 > < 回 >