
Geometric HoTT and comonadic modalities

Michael Shulman1

1(University of San Diego)

Geometry in Modal Homotopy Type Theory workshop
Carnegie Mellon University

March 11, 2019

Outline

1 Cohesion

2 Geometric type theory

3 Geometric modalities

4 Modal type theory

Classical algebraic topology

spaces

algebra

πn, Hn, etc.

information

Modern algebraic topology

spaces
∞-groupoids

(“homotopy spaces”)

algebra

shape

(fundamental ∞-groupoid)

πn, Hn, etc.

information

Homotopy type theory

spaces

homotopy type theory

∞-groupoids
(“homotopy spaces”)

algebra

semantics

shape

(fundamental ∞-groupoid)

πn, Hn, etc.

information

Homotopy type theory

spaces

homotopy type theory

∞-groupoids
(“homotopy spaces”)

algebra

semantics

shape

(fundamental ∞-groupoid)

πn, Hn, etc.

information

Geometry vs Homotopy theory

Many of the classical applications of algebraic topology require
passing back and forth between treating a topological space up to
homeomorphism and up to homotopy equivalence:

1 Brouwer’s fixed-point theorem

2 The Borsuk-Ulam theorem

3 The fundamental theorem of algebra

4 The hairy ball theorem

5 The Lefschetz fixed-point theorem

Cohesive algebraic topology

spaces
∞-groupoids

(“homotopy spaces”)

algebra

continuous ∞-groupoids
shape

as 0-ty
pes

as discretes

πn
, H

n
, etc

.

information

Cohesive homotopy type theory

cohesive homotopy type theory

spaces
∞-groupoids

(“homotopy spaces”)

algebra

continuous ∞-groupoids

semantics

shape

as 0-ty
pes

as discretes

πn
, H

n
, etc

.

information

Continuous ∞-groupoids

Idea

A continuous ∞-groupoid is an ∞-groupoid with compatible
topologies on the set of k-morphisms for all k.

Examples

• An ordinary topological space of objects, with only identity
k-morphisms for k > 0.

• An ordinary ∞-groupoid, with the discrete topology in all
dimensions.

• An ordinary ∞-groupoid with the indiscrete topology.

• The delooping of a topological group G , with one object, with
G as the space of 1-morphisms, and only k-identities for k > 1.

Other kinds of geometry

We also want to use homotopy theory to study more “geometric”
contexts, like:

1 Smooth geometry

2 Super geometry

3 Equivariant geometry

4 Algebraic geometry

5 . . .

Geometric homotopy type theory

geometric homotopy type theory

geometry homotopy theory

algebra

geometric ∞-groupoids

semantics

as 0-ty
pes

πn
, H

n
, etc

.

information

Geometric ∞-groupoids

Idea

A geometric ∞-groupoid is an ∞-groupoid with compatible
“geometries” on the set of k-morphisms for all k .

Definition

A geometric ∞-groupoid is an ∞-sheaf on some ∞-site of
geometric spaces.

In other words:

1 Start with some small category C of geometric spaces.

2 “Freely” add ∞-colimits (pass to its ∞-presheaf category).

3 Force some “good” colimits that existed in C (e.g. unions of
open covers) to coincide with the free ones.

The category of geometric ∞-groupoids is then an ∞-topos, and
hence∗ interprets homotopy type theory.

Some geometries

Some geometric ∞-sites:

1 Cartesian spaces Rn and continuous maps

2 Cartesian spaces Rn and smooth maps

3 “Infinitesimally thickened” cartesian spaces

4 “Super” cartesian spaces

5 Affine schemes with Zariski, étale, Nisnevich, etc. covers

Other models of geometric HoTT include:

1 Global equivariance (actions of “all groups at once”)

2 Parametrized spaces

3 Parametrized spectra

4 Excisive functors

Outline

1 Cohesion

2 Geometric type theory

3 Geometric modalities

4 Modal type theory

What is Geometric HoTT?

Answer #1

We “expand the universe” of HoTT to include geometric
∞-groupoids in addition to ordinary ones.

Answer #2

We realize that the HoTT we’ve been doing all along might as well
have been talking about geometric ∞-groupoids in addition to
ordinary ones.

Adding homotopy to type theory

Ordinary type theory (for a mathematican)

• Intuition: types as sets, terms as functions.

Homotopy type theory

• New intuition: types as ∞-groupoids, terms as functors.

• Detect their ∞-groupoid structure with the identity type.

• The old intuition is still present in the 0-types.

Adding geometry to type theory

Ordinary type theory

• Intuition: types as sets, terms as functions.

Synthetic geometry

• New intuition: types as geometric objects.

• Detect their geometric structure in various ways.

• The old intuition is still present in the discrete objects.

Adding geometry AND homotopy to type theory

Geometric homotopy type theory

New intuition: types as geometric ∞-groupoids.

Every type has both ∞-groupoid structure and geometric structure.
Either, both, or neither can be trivial.

Example

• The higher inductive S1 has nontrivial higher structure
(ΩS1 = Z), but is geometrically discrete (no geometry).

• If A1 is a “line” (e.g. the real numbers), then
S1 =

{
(x , y) : A2

∣∣ x2 + y2 = 1
}

has trivial higher structure
(is a 0-type), but nontrivial geometry.

Usually, S1 and S1 have the same “shape”.

Outline

1 Cohesion

2 Geometric type theory

3 Geometric modalities

4 Modal type theory

Towards geometric HoTT

So that’s the idea of geometric HoTT: ordinary HoTT might as well
always have been talking about geometric objects.

But to get any real information about geometry out of this, we need
to use something about geometric ∞-groupoids that’s not true in
ordinary HoTT.

One approach is to assume axioms. Another, pioneered by Lawvere
on the semantic side, is to equip type theory with modalities, i.e.
systems of adjoint functors.

Discrete objects

There is always an adjunction of (∞, 1)-categories:

∞-groupoids geometric ∞-groupoids
p?

p?

• p?(X) is the underlying ∞-groupoid of X (geometry forgotten)

• p?(A) is A with “discrete geometry” (e.g. discrete topology).

Usually, p? is fully faithful, so the discrete ∞-groupoids are a
coreflective subcategory.

• We denote the reflector p?p? by [.

• A map [X → Y is a map on underlying ∞-groupoids (no
geometry).

• Every map out of a discrete ∞-groupoid is geometric.

Codiscrete objects

Definition

Y is codiscrete if every map into it is geometric.

[X → Y

X →]Y

Often, the codiscrete objects are reflective, by an adjunction [a]
that induces equivalences

discrete
geometric
∞-groupoids

' ordinary
∞-groupoids

'
codiscrete
geometric
∞-groupoids

Homotopical objects

Let A1 be a “geometric line” (e.g. R), with points 0, 1 : A1.

A geometric homotopy f
geo∼ g is a map X × A1 → Y such that

X

X × A1 Y

X

f
0

1
g

Definition

An object Y is homotopical (or geometric homotopy local) if
Y → (A1 → Y) is an equivalence.

In particular, then f
geo∼ g implies f = g : geometric homotopies

imply synthetic homotopies.

Shape

By nullification at A1 there is a shape modality s whose modal types
are the homotopical ones.
(s is an “esh”, the IPA voiceless postalveolar fricative — English sh)

• If geometry is “locally contractible”, homotopical = discrete.
This is cohesive HoTT: discretes are both reflective and
coreflective, and we have an adjoint triple s a [a].
• Continuous ∞-groupoids
• Smooth, differential, super, etc. ∞-groupoids
• Global equivariance, parametrized spectra, excisive functors, etc.

• But sometimes this isn’t true.
• Algebraic geometry: homotopical objects are motivic spaces.

Fundamental ∞-groupoids

Idea: s turns geometric paths into homotopical ones.

Example

Suppose the geometric circle S1 can be written as “A1/Z”, i.e. a
coequalizer

A1 A1 S1.

Then sS1 = sS1, since both are a coequalizer of 1⇒ 1 in the
category of homotopical objects.

In cohesive HoTT, with s a [a]:
• The homotopical (= discrete) objects are coreflective, hence

closed under colimits. Thus sS1 = sS1 = S1.

• More generally, s computes the fundamental ∞-groupoid.

(Algebraically, s is the “motivic fundamental ∞-groupoid”.)

Outline

1 Cohesion

2 Geometric type theory

3 Geometric modalities

4 Modal type theory

Semantic reflective subuniverses

Because a reflective subuniverse is a map ♦ : U → U , it induces a
reflective subcategory not just of the category of types but of all of
its slice categories (a reflective subfibration):

Y Ũ

X U

y
π

♦XY Ũ

X U U

y π

♦

The internal construction of localization means that all accessible
reflective subcategories can be extended to some reflective
subfibration.

The monadic modalities (Σ-closed reflective subuniverses)
correspond to stable factorization systems.

The problem of discrete coreflection

• s is a monadic modality, definable purely inside type theory as a
nullification at A1.
• (] too, although its generators are less obvious.)
• [is a comonadic modality, but cannot be defined internally.

Theorem

The only internal “coreflective subuniverses” are �(X) = X × P for
some proposition P.

Proof.

Given �, let P = �1.

• The map X → 1 yields �X → �1, hence (with the counit)
�X → X ×�1.

• For any x : X we have x : 1→ X , hence �x : �1→ �X . This
defines X ×�1→ �X .

Then show these are inverses.

The solution to discrete coreflection

First Solution

[can only be applied in the empty context.

Semantically: discrete objects are a coreflective subcategory of
geometric ∞-groupoids, but not of all its slice categories.

Better Solution

[can only be applied when everything in the context is discrete.

Semantically: discrete objects are a coreflective subcategory of
geometric ∞-groupoids, considered as indexed over ordinary
∞-groupoids.

The solution to discrete coreflection

First Solution

[can only be applied in the empty context.

Semantically: discrete objects are a coreflective subcategory of
geometric ∞-groupoids, but not of all its slice categories.

Better Solution

[can only be applied when everything in the context is discrete.

Semantically: discrete objects are a coreflective subcategory of
geometric ∞-groupoids, considered as indexed over ordinary
∞-groupoids.

Why modal type theory? (for type theorists)

x : [A ` C

x : [A ` [C
or

x :: A | · ` C

x :: A | y : B ` [C

• Literally requiring types in the context to be of the form [A
breaks the admissibility of substitution.

• Instead we “judgmental-ize” it with a formalism of “crisp
variables” x :: A.

• The modality [internalizes the judgmental :: in the same way
that the cartesian product “internalizes” the judgmental
comma

A,B ` C

A× B ` C .

Why modal type theory? (for category theorists)

E = a model category for geometric ∞-groupoids
S = a model category for ordinary ∞-groupoids

S E p? a p?
p?

p?

• Regard E as indexed over S via p?: for A ∈ S , the A-indexed
objects are the slice over p?A.

• All ordinary types (Σ, Π, etc.) denote structure of E .

• x : A in the context means working in the slice E /A.

• x :: A in the context means working indexed over p?A, hence in
the slice E /p?p?A.

• Types are fibrant objects, but p?p?A may not be fibrant.
[A is its fibrant replacement.

Crisp variables

• We refer to x :: A as a crisp variable.
If x :: P with P a proposition, we say P holds crisply.

• For emphasis, we sometimes call x : A a cohesive variable.

• x :: A is a stronger hypothesis than x : A.
Something which holds crisply also holds cohesively.

• A crisp term or crisp conclusion is one that only uses crisp
variables/hypotheses.
• We can substitute:

• crisp terms for crisp variables
• crisp terms for cohesive variables
• cohesive terms for cohesive variables

but not cohesive terms for crisp variables.

[-formation and introduction

A general judgment has the form ∆ | Γ ` J , where ∆ is a context
of crisp variables and Γ a context of cohesive ones. Semantically
this is a fibration Γ� p?p?∆.

• A type ∆ | Γ ` A : Type is a fibration A� Γ� p?p?∆.

• Applying p?p? (note p?p
? = Id) and fibrantly replacing, we get

[A

p?p?A p?p?Γ p?p?∆

∼

• In syntax this becomes

∆ | Γ ` A : Type

∆, Γ | · ` [A : Type ∆, Γ, x :: A | · ` x [: [A

[-formation and introduction, type-theoretically

∆ | Γ ` A : Type

∆, Γ | · ` [A : Type ∆, Γ, x :: A | · ` x [: [A

1 No point to separating Γ from ∆, since ∆ | Γ ` A : Type is a
stronger hypothesis than ∆, Γ | · ` A : Type.

∆ | · ` A : Type

∆ | · ` [A : Type ∆, x :: A | · ` x [: [A

2 Allow “fully general contexts” in the conclusion, including
substituting a crisp term for the crisp variable x :

∆ | · ` A : Type

∆ | Γ ` [A : Type

∆ | · ` A : Type ∆ | · ` a : A

∆ | Γ ` a[: [A

Summary: From “inside” [(−) or (−)[, no cohesive variables from
“outside” are visible.

[-elimination and computation

C

(p?p?A)[σ] p?p?A

([A)[σ] [A

Γ p?p?∆

∼ ∼

σ

∆ | Γ, x : [A ` C : Type ∆, u :: A | Γ ` c : C [u[/x]

∆ | Γ, x : [A ` (let u[:= x in c) : C

(let u[:= a[in c) ≡ c[a/u]

[-elimination and computation

C

(p?p?A)[σ] p?p?A

([A)[σ] [A

Γ p?p?∆

∼ ∼

σ

∆ | Γ, x : [A ` C : Type ∆, u :: A | Γ ` c : C [u[/x]
∆ | Γ ` b : [A

∆ | Γ ` (let u[:= b in c) : C [b/x]

(let u[:= a[in c) ≡ c[a/u]

[-elimination and computation

C

(p?p?A)[σ] p?p?A

([A)[σ] [A

Γ p?p?∆

∼ ∼

σ

∆ | Γ, x : [A ` C : Type ∆, u :: A | Γ ` c : C [u[/x]
∆ | Γ ` b : [A

∆ | Γ ` (let u[:= b in c) : C [b/x]

(let u[:= a[in c) ≡ c[a/u]

The counit of [

Remember that [is a coreflection, so it should have a counit.

p?p?A A

[A p?p?∆

∼

(−)[: [A→ A is defined by x[≡ (let u[:= x in u).

Note u is a crisp variable, but gets used as a cohesive one; this
corresponds to the strict counit p?p?A→ A.

For v :: A we have v [[≡ (let u[:= v [in u) ≡ v . Note this only
makes sense for crisp v , since only then can we even write v [.

Properties of [

Lemma (Uniqueness principle)

For f :
∏

x :[A C (x) and x : [A we have (let u := x in f (u[)) = f (x).

Proof.

By [-elimination, we may assume x is v [for some v :: A.
But then (let u := v [in f (u[)) ≡ f (v [) by computation.

Lemma (Commuting [with itself)

(let v [:= (let u[:= M in N) in P) = (let u[:= M in (let v [:= N in P)).

Proof.

By [-elimination we may assume M is w [for some w :: A.
But then both sides reduce to (let v [:= N[w/u] in P).

Properties of [

Lemma (Uniqueness principle)

For f :
∏

x :[A C (x) and x : [A we have (let u := x in f (u[)) = f (x).

Proof.

By [-elimination, we may assume x is v [for some v :: A.
But then (let u := v [in f (u[)) ≡ f (v [) by computation.

Lemma (Commuting [with itself)

(let v [:= (let u[:= M in N) in P) = (let u[:= M in (let v [:= N in P)).

Proof.

By [-elimination we may assume M is w [for some w :: A.
But then both sides reduce to (let v [:= N[w/u] in P).

[is a functor

For f :: A→ B, define [f : [A→ [B by

[f (x) ≡ (let u[:= x in f (u)[)

Then for g : B → C we have

[g([f (x)) ≡ let v [:= (let u[:= x in f (u)[) in g(v)[

= let u[:= x in (let v [:= f (u)[in g(v)[)

≡ let u[:= x in g(f (u))[

≡ [(g ◦ f)(x).

	Cohesion
	Geometric type theory
	Geometric modalities
	Modal type theory

